首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gamete development requires a coordinated soma-germ line interaction that ensures renewal and differentiation of germline and somatic stem cells. The physical contact between the germline and somatic cell populations is crucial because it allows the exchange of diffusible signals among them. The tumor suppressor gene discs large (dlg) encodes a septate junction protein with functions in epithelial cell polarity, asymmetric neuroblast division and formation of neuromuscular junctions. Our recent work reveals a new role of dlg in the Drosophila testis, as mutations in dlg lead to testis defects and cell death. Dlg is required throughout spermatogenesis in the somatic lineage and its localization changes from a uniform distribution along the plasma membrane of somatic cells in the testis apex, to a restricted localization on the distally located somatic cell in growing cysts. The extensive defects in dlg testis underline the importance of the somatic cells in the establishment and maintenance of the male stem cell niche and somatic cell differentiation. Here, we discuss our latest findings on the role of dlg in the Drosophila testis, supporting the view that junction proteins are dynamic structures, which can provide guiding cues to recruit scaffold proteins or other signaling molecules.Key words: dlg, Drosophila melanogaster, germ cell differentiation, septate junctions, somatic stem cells, somatic cyst cellsThe discovery of mutations causing neoplasia during Drosophila development1 followed by the molecular characterization of these genes has shown that cell polarity is critically affected in the tumor cells. Three of these genes, lethal (2) giant larvae (lgl), discs large-1 (dlg) and scribble (scrib), encode scaffolding proteins, associated with either the cytoskeleton matrix or septate junctions.29 Analysis over the last decades revealed that these proteins act as more than just static barriers limiting the diffusion of other components along the cortical cell domains. In particular, they function as dynamic organizing centers, targeting site-specific proteins in discrete domains and provide guiding cues for signaling molecules and insertion of membrane components.10 Nowadays, several studies place Dlg as a key player in numerous tissues at different time points throughout development, contributing to epithelial polarity establishment, polarized membrane insertion, asymmetric neuroblast division, formation of neuromuscular junctions (NMJ) and planar cell polarity in vertebrates.4,7,9,1115 Interestingly, the four mammalian homologs of the Drosophila dlg are also involved in cell polarity and become downregulated in a series of human cancers. Moreover, a mammalian dlg-1 transgene can substitute a defective dlg gene in Drosophila and rescue the development of dlg mutant animals.8,9,16 Therefore, it is perfectly plausible to envisage that Drosophila functions uncovered in other tissues may be similarly conserved in other species.Similar to vertebrates, the Drosophila testis consists of germ cells and somatic cells. The somatic cells of the hub form the organizing center at the apex of the testis and recruit germline stem cells (GSCs) (Fig. 1A), giving rise to the male stem cell niche. Each GSC attached to the hub is surrounded by two somatic stem cells (SSCs). Upon asymmetric stem cell division, each GSC produces a new GSC attached to the hub and a distally located gonialblast, whereas each SSC pair divides to generate two SSCs and two somatic cyst cells (SCCs).1719 The gonialblast divides mitotically four more times to give rise to 16 interconnected spermatogonial cells, forming a cyst surrounded by the two SCCs.21 Then, the spermatogonial cyst grows markedly in size and differentiates to primary spermatocytes that enter the pre-meiotic phase (Fig. 1A, B and D–F).19 We have recently investigated a new role of dlg in the Drosophila testis.20 In contrast to the overgrowth phenotypes observed in imaginal discs and brain hemispheres,4,6,21 dlg inactivation leads to testis degeneration during early larval development. The dlg testes are extremely small and contain a reduced number of GSCs loosely attached to the hub (Fig. 1C).20 In addition, the few spermatogonial cysts, which become formed, fully degenerate during the second and third larval instars.Open in a separate windowFigure 1(A) Diagram depicting early spermatogenesis in Drosophila. The red line indicates the Dlg distribution in the hub, SSCs, early and late SCCs. GSCs, germline stem cells; SCCs, somatic cyst cells; SSCs, somatic stem cells. (B) Apex of wild-type 3rd instar larval testis and (C) dlgm52 3rd instar larval testis displaying a reduced number of GSCs, spermatogonial and spermatocyte cysts. In mutant dlgm52 testes, SSCs and early SCCS positively stained for Traffic-jam are still present. However, late SCCs identified by staining for Eye absent remain undetectable.20 Vasa (red), Traffic-jam (green) and Arm + α-Spectrin (blue). (D–F) Pattern of Dlg distribution in 3rd instar larval testis. (E and F) are enlargements at different optical sections of the testis shown in (D), displaying Dlg staining in the hub region and growing spermatocyte cysts, respectively. Testis hub is oriented towards the left.Recent advances in Drosophila spermatogenesis and the male stem cel niche have clearly shown that the intrinsic signals of the germ cells are important but not sufficient to support stem cell homeostasis. Signals emanating from SSCs and SCCs are also required for testis development. Physical contacts among the cell populations in the Drosophila testis allow the exchange of signals, which promote tissue survival and set the balance between stem cell identity and differentiation.18 Interestingly, the Dlg protein is present in all somatic cells including the hub, SSCs and SCCs (Fig. 1D–F) and a specific requirement of dlg in these cells is further supported by the finding that the mutant phenotype could be reverted by expressing dlg in somatic cells but not in germ cells.20 Further analysis points out that the mutant GSCs are significantly larger than in wild-type, lower in number and loosely attached to the hub.20 Preliminary results indicate a defective orientation of the daughter centrosome and absence of mitotic spindle in dividing GSCs, which together with the increased GSC size, allows us to speculate that GSCs may grow but fail to undergo mitosis. Similar phenotypes are observed in mutations affecting the insulin pathway,22 further stressing the importance of cell communication between germ cells and somatic cells. However, a functional connection between dlg and the insulin pathway remains yet to be experimentally determined. The defects detected in the dlg mutant testis place dlg as a key regulator in the early development of spermatogonial cysts.During testis differentiation, the Dlg protein displays a dynamic change in its intracellular localization. First, Dlg is uniformly associated with the plasma membrane on all somatic cells in the male stem cell niche and early spermatogonial cysts, and then becomes restricted to the most proximal SCC in late spermatogonial cysts and growing spermatocyte cysts (Fig. 1D–F). The transition from a uniform to a restricted distribution is achieved between the 8- to 16-cell cyst stages, when one of the two SCCs caps the distal side of the growing cyst. Interestingly, the capping corresponds to the axis of cyst growth and points out the direction of cyst expansion. A restoration of nearly normal testis morphology can be obtained by expressing a dlg transgene in SSCs and early SCCs. In contrast, expression of a dlg transgene in later SCCs can still restore the development of already formed cysts, some of which may reach an advanced post-meiotic stage, but the testis is generally depleted in early cysts.20 These data indicate that dlg is required for the differentiation of the somatic cell lineage and, therefore, the early differentiation of the germline into spermatogonial cells. Results of RNAi experiments provide also evidence that dlg silencing in late SSCs results in a fragmentation of the cysts in advanced stages.20 The specific recruitment of Dlg on the membrane of distal SCCs remains an open question, although it is possible to envisage that phosphorylation of Dlg by the PAR-1 kinase may play a role, as it has been shown in the case of postsynaptic targeting of Dlg in NMJs.23Therefore, Dlg may exert different functions in the somatic cells that are required for (1) GSC attachment to the hub and proper asymmetric GSC division, (2) the architecture and early differentiation of the spermatogonial cysts and (3) the expansion and growth of the spermatocyte cysts. Presumably, dlg is required for establishing and maintaining a tight connection between GSCs and SSCs around the hub. The connection between gonialblast and SCC is also maintained during the mitotic divisions. In SSCs and early SCCs, dlg acts critically to establish a normal cyst structure, whereas in further spermatogonial and spermatocyte stages dlg is critical for the survival, growth and expansion of the cyst. Our rescue experiments further suggest that if proper cyst architecture is not established when the two stem cell populations move away from the hub, it cannot be re-established at later stages. Moreover, the restricted Dlg localization in the distal SCC suggests that dlg may be necessary for the polarized growth of spermatocyte cysts and thus act as a critical factor for planar cell polarity. In the second phase, dlg is involved in spermatogonial and spermatocyte cyst growth, viability and differentiation. Further RNA silencing experiments using GAL4-drivers that target dlg in SCCs during late spermatocyte growth, meiosis and post-meiotic stages may further provide insights into dlg requirement during the whole spermatogenesis. Preliminary results indicate that Dlg is similarly produced and localized on the distal SCC in spermatocyte and spermatid cysts of adult testes, suggesting that dlg may be required from the early stages, from the establishment of male stem cell niche and SCC survival, up to the later stages of sperm formation.An unexpected finding of our analysis deals with the formation of wavy and ruffled plasma membrane in dlg overexpressing cells capping the spermatocyte cysts. One way to interpret this result would be to consider that Dlg regulates the intensity of germ cell encapsulation through the Egfr pathway, which is the major signaling pathway active at the microenvironment of the spermatogonial cysts.24,25 Membrane ruffling, detected in somatic cells upon dlg overexpression, is highly reminiscent of the formation of lammellipodia-like structures formed upon upregulation of Rac1 in SCCs.26 Rac1 is a downstream component of the Egfr pathway and acts antagonistically to Rho to regulate germ cell encapsulation. As the Dlg protein plays a central role in the organization of epithelial junctions and in signal transduction at sites of cell-cell contact, it is possible to envisage that the C-terminal tail of Egfr interacts with one of the PDZ domains of Dlg.9 In this way, dlg inactivation would result in a disruption of the Egfr protein complexes, block the Egfr pathway and impair Rac1 function. Based on these data, we hypothesize that Dlg may act on the cytoskeleton of the somatic cells to mediate cell-shape changes leading to either cellular extensions over the spermatogonial and spermatocyte cysts or reinforcing cell-to-cell contact with the growing germ cells.A second possibility would imply a general role for Dlg in membrane proliferation and expansion of the SCCs. It has already been shown that Dlg regulates membrane proliferation in a subset of NMJ in a dose-dependent fashion.27 Recent focus on membrane growth during cellularization indicates again that Dlg is an important player in the process of polarized membrane insertion.11,2830 Up to now, there is no mechanism describing how SCCs in Drosophila testis expand, elongate and envelop germ cell cysts, and how the SCCs direct sperm differentiation and individualization. Membrane proliferation during tissue spreading and cell surface extensions is frequently associated with the formation of membrane ruffles.31,32 The finding that dlg overexpression in the distal SCC leads to membrane ruffling indicates that Dlg may mediate membrane growth and membrane extension over the cysts but not necessarily at the expense of the proximal SCC devoid of Dlg. Therefore, there should be a physical limitation in the expansion of the dlg-expressing cell, independent of the amount of synthesized Dlg. Further analyses of components at the junctions between the distal and proximal SCCs or components exhibiting a complementary distribution to Dlg may provide ways to identify further regulators of testis morphogenesis.If Dlg defines sites of membrane addition it may provide a link between membrane trafficking and insertion of polarized membrane components. In NMJs, the postsynaptic distribution of the t-SNARE protein Gtaxin depends on its direct interaction to the Dlg GUK domain,12 whereas in early embryogenesis Dlg genetically interacts with Exo84.33 Moreover, the Dlg-Strabismus complex recruits membrane associated proteins and lipids from internal membranes to sites of new plasma membrane formation.11 The occurrence of similar proteins in testis was reported in humans where the SNARE-associated component Snapin binds Pumilio2 and Nanos1 proteins in the male germ cells.34 It would be interesting to know whether Dlg plays a similar role in Drosophila testis, in guiding t-SNARE proteins and components of the exocyst complex into intracellular membranes, either directly or indirectly by regulating the distribution of their direct binding partners. Although Dlg may bind to different proteins in epithelial cells, neuroblasts and NMJ according to the protein availability in these tissues, the function of the Dlg protein may be still conserved in a broader sense. Through its PDZ domains Dlg may bind to numerous transmembrane proteins and receptors, and may link them to the cytoskeleton or signaling pathways. The knowledge gained on the role of Dlg in these systems will allow us to study how Dlg mediates membrane proliferation in the early germ cells in male gonads.Recent work has showed that Zero population growth (Zpg), the Drosophila gap junction Innexin 4, is localized to the spermatogonia surface, primarily on the sides adjacent to SCCs35 and is required for the survival and differentiation of early germ cells in both sexes.3537 In zpg testes, the spermatogonia are unable to differentiate and are progressively lost, leading to the formation of tiny testes containing a small number of GSCs and germline clusters devoid of branching fusome,35 resembling the dlg phenotype. In contrast, the SCCs that die through apoptosis in dlg testes are present in zpg, indicating that Dlg acts primarily on SCCs and Zpg on the germ cells.20,35 Moreover, zpg testes display often a considerably enlarged hub. However, a direct comparison of the effect of the two proteins on the hub cannot be made because the null dlgm52 allele produces a truncated non-functional Dlg protein that could still be detected in the hub.20 Apparently this protein, which contains the PDZ1 and PDZ2 domains, could be recognized by a monoclonal antibody against the PDZ2 domain (data not shown).20 This observation raises the possibility that the truncated Dlg protein may maintain some of its binding properties, which prevents the hub structure from falling apart. Further studies will be performed to determine the requirement of dlg in hub formation and structure.Our results, complementary to current researches conducted in this field, point out the importance of the somatic cell contribution in the organization of the Drosophila testis and the differentiation of the male germline. In mammals, spermatogenesis depends also on interactions between somatic Sertoli cells and germ cells. Sertoli cells act as supportive somatic cells and contain junction proteins with a high degree of similarity to Dlg. These proteins play a critical role in mammalian spermatogenesis.38,39 Furthermore, the identification of mammalian genes with known function in Drosophila spermatogenesis and the evolutionary conservation among the Dlg proteins suggests that the pathways regulating the balance between stem cell renewal and differentiation might be similarly conserved. Interestingly, recent observations in mammals indicate that Dlg homologs play a role in the formation of mouse gonads and interact with gap junction proteins.13,40 In addition, Dlg is required for smooth muscle orientation in the mouse ureter13 and interacts with the gap protein Connexin 32,41 whereas ZO-1, a MAGUK protein bearing similarity to Dlg and associated with tight junctions in mammalian Sertoli cells,39 binds also to gap junction proteins, among them connexin 43, which is the predominant gap junction protein in the testis.38,39,42 All these observations point out to functional similarities between Drosophila and vertebrate Dlg and provide strong indications that our findings in Drosophila may be extended to higher organisms.  相似文献   

2.
In all animals examined, somatic cells of the gonad control multiple biological processes essential for germline development. Gap junction channels, composed of connexins in vertebrates and innexins in invertebrates, permit direct intercellular communication between cells and frequently form between somatic gonadal cells and germ cells. Gap junctions comprise hexameric hemichannels in apposing cells that dock to form channels for the exchange of small molecules. Here we report essential roles for two classes of gap junction channels, composed of five innexin proteins, in supporting the proliferation of germline stem cells and gametogenesis in the nematode Caenorhabditis elegans. Transmission electron microscopy of freeze-fracture replicas and fluorescence microscopy show that gap junctions between somatic cells and germ cells are more extensive than previously appreciated and are found throughout the gonad. One class of gap junctions, composed of INX-8 and INX-9 in the soma and INX-14 and INX-21 in the germ line, is required for the proliferation and differentiation of germline stem cells. Genetic epistasis experiments establish a role for these gap junction channels in germline proliferation independent of the glp-1/Notch pathway. A second class of gap junctions, composed of somatic INX-8 and INX-9 and germline INX-14 and INX-22, is required for the negative regulation of oocyte meiotic maturation. Rescue of gap junction channel formation in the stem cell niche rescues germline proliferation and uncovers a later channel requirement for embryonic viability. This analysis reveals gap junctions as a central organizing feature of many soma–germline interactions in C. elegans.  相似文献   

3.
Stem cells in tissues reside in and receive signals from local microenvironments called niches. Understanding how multiple signals within niches integrate to control stem cell function is challenging. The Drosophila testis stem cell niche consists of somatic hub cells that maintain both germline stem cells and somatic cyst stem cells (CySCs). Here, we show a role for the axon guidance pathway Slit-Roundabout (Robo) in the testis niche. The ligand Slit is expressed specifically in hub cells while its receptor, Roundabout 2 (Robo2), is required in CySCs in order for them to compete for occupancy in the niche. CySCs also require the Slit-Robo effector Abelson tyrosine kinase (Abl) to prevent over-adhesion of CySCs to the niche, and CySCs mutant for Abl outcompete wild type CySCs for niche occupancy. Both Robo2 and Abl phenotypes can be rescued through modulation of adherens junction components, suggesting that the two work together to balance CySC adhesion levels. Interestingly, expression of Robo2 requires JAK-STAT signaling, an important maintenance pathway for both germline and cyst stem cells in the testis. Our work indicates that Slit-Robo signaling affects stem cell function downstream of the JAK-STAT pathway by controlling the ability of stem cells to compete for occupancy in their niche.  相似文献   

4.
The Drosophila testis has proven to be a valuable model organ for investigation of germline stem cell (GSC) maintenance and differentiation as well as elucidation of the genetic programs that regulate differentiation of daughter spermatogonia. Development of germ cell specific GAL4 driver transgenes has facilitated investigation of gene function in GSCs and spermatogonia but specific GAL4 tools are not available for analysis of postmitotic spermatogonial differentiation into spermatocytes. We have screened publically available pGT1 strains, a GAL4‐encoding gene trap collection, to identify lines that can drive gene expression in late spermatogonia and early spermatocytes. While we were unable to identify any germline‐specific drivers, we did identify an insertion in the chiffon locus, which drove expression specifically in early spermatocytes within the germline along with the somatic cyst cells of the testis. genesis 50:914–920, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
6.
At the apical tip of the Drosophila testis, germline and somatic stem cells surround a cluster of somatic cells called the hub. Hub cells produce a self-renewal factor, Unpaired (Upd), that activates the JAK-STAT pathway in adjacent stem cells to regulate stem cell behavior. Therefore, apical hub cells are a critical component of the stem cell niche in the testis. In the course of a screen to identify factors involved in regulating hub maintenance, we identified headcase (hdc). Hub cells depleted for hdc undergo programmed cell death, suggesting that anti-apoptotic pathways play an important role in maintenance of the niche. Using hdc as paradigm, we describe here the first comprehensive analysis on the effects of a progressive niche reduction on the testis stem cell pool. Surprisingly, single hub cells remain capable of supporting numerous stem cells, indicating that although the size and number of niche support cells influence stem cell maintenance, the testis stem cell niche appears to be remarkably robust in the its ability to support stem cells after severe damage.  相似文献   

7.
The mechanisms that control differentiation of stem cells to specialised cell types probably include factors intrinsic to stem cells as well as extrinsic factors produced by the microenvironment of the stem cell niche. The Drosophila male germline is renewed from a population of stem cells located in the apical tip of the adult testis. The morphological relationship between germline stem cells and their surrounding somatic cells is well understood but the factors that regulate stem cell proliferation and differentiation are still being uncovered. This study examined the effect of stimulating Dpp signalling directly in male germ cells. Ectopic Dpp or Activin signalling resulted in overproliferation of both stem cell-like and spermatogonial-like cells in the apical region of the testis. A third cell population that expressed stem cell markers was seen to proliferate in the distal testis when Dpp signalling was either stimulated or repressed in germline stem cells.  相似文献   

8.
9.
Ramathal et al. have employed an elegant xenotransplantation technique to study the fate of human induced pluripotent stem cells (hiPSCs) from fertile males and from males carrying Y chromosome deletions of the azoospermia factor (AZF) region. When placed in a mouse testis niche, hiPSCs from fertile males differentiate into germ cell‐like cells (GCLCs). Highlighting the crucial role of cell autonomous factors in male sterility, hiPSCs derived from azoospermic males prove to be less successful under similar circumstances. Their studies argue that the agametic “Sertoli cell only” phenotype of two of the AZF deletions likely arises from a defect in the maintenance of germline stem cells (GSCs) rather than from a defect in their specification. These observations underscore the importance of the dialogue between the somatic niche and its inhabitant stem cells, and open up interesting questions concerning the functioning of the somatic niche and how it communicates to the GSCs.  相似文献   

10.
11.
12.
13.
Yb regulates the proliferation of both germline and somatic stem cells in the Drosophila melanogaster ovary by activating piwi and hh expression in niche cells. In this study, we show that Yb protein is localized as discrete cytoplasmic spots exclusively in the somatic cells of the ovary and testis. These spots, which are different from all known cytoplasmic structures in D. melanogaster, are evenly electron-dense spheres 1.5 µm in diameter (herein termed the Yb body). The Yb body is frequently associated with mitochondria and a less electron-dense sphere of similar size that appears to be RNA rich. There are one to two Yb bodies/cell, often located close to germline cells. The N-terminal region of Yb is required for hh expression in niche cells, whereas the C-terminal region is required for localization to Yb bodies. The entire Yb protein is necessary for piwi expression in niche cells. A double mutant of Yb and a novel locus show male germline loss, revealing a function for Yb in male germline stem cell maintenance.  相似文献   

14.
Many tissues are sustained by adult stem cells, which replace lost cells by differentiation and maintain their own population through self-renewal. The mechanisms through which adult stem cells maintain their identity are thus important for tissue homeostasis and repair throughout life. Here, we show that a histone variant, His2Av, is required cell autonomously for maintenance of germline and cyst stem cells in the Drosophila testis. The ATP-dependent chromatin-remodeling factor Domino is also required in this tissue for adult stem cell maintenance possibly by regulating the incorporation of His2Av into chromatin. Interestingly, although expression of His2Av was ubiquitous, its function was dispensable for germline and cyst cell differentiation, suggesting a specific role for this non-canonical histone in maintaining the stem cell state in these lineages.  相似文献   

15.
Spermatogenesis, involving multiple transit amplification divisions and meiosis, occurs within an enclosure formed by two somatic cells. As the cohort of germline cells divide and grow, the surface areas of the somatic cells expand maintaining a tight encapsulation throughout the developmental period. Correlation between the somatic cell growth and germline development is unclear. Here, we report standardization of a quantitative assay developed for estimating the somatic roles of target molecules on germline division and differentiation in Drosophila testis. Using the assay, we studied the somatic roles of phosphatidylinositol-3-kinase (PI3K). It revealed that the expression of PI3KDN is likely to facilitate the early germline development at all stages, and an increase in the somatic PI3K activity during the early stages delays the transition to spermatocyte stage. Together, these results suggest that somatic cell growth plays an important role in regulating the rate of germline development.  相似文献   

16.
Xu J  Lan L  Bogard N  Mattione C  Cohen RS 《PloS one》2011,6(5):e20180

Background

The Drosophila egg chamber provides an excellent system in which to study the specification and differentiation of epithelial cell fates because all of the steps, starting with the division of the corresponding stem cells, called follicle stem cells, have been well described and occur many times over in a single ovary.

Methodology/Principal Findings

Here we investigate the role of the small Rab11 GTPase in follicle stem cells (FSCs) and in their differentiating daughters, which include main body epithelial cells, stalk cells and polar cells. We show that rab11-null FSCs maintain their ability to self renew, even though previous studies have shown that FSC self renewal is dependent on maintenance of E-cadherin-based intercellular junctions, which in many cell types, including Drosophila germline stem cells, requires Rab11. We also show that rab11-null FSCs give rise to normal numbers of cells that enter polar, stalk, and epithelial cell differentiation pathways, but that none of the cells complete their differentiation programs and that the epithelial cells undergo premature programmed cell death. Finally we show, through the induction of rab11-null clones at later points in the differentiation program, that Rab11 suppresses tumor-like growth of epithelial cells. Thus, rab11-null epithelial cells arrest differentiation early, assume an aberrant cell morphology, delaminate from the epithelium, and invade the neighboring germline cyst. These phenotypes are associated with defects in E-cadherin localization and a general loss of cell polarity.

Conclusions/Significance

While previous studies have revealed tumor suppressor or tumor suppressor-like activity for regulators of endocytosis, our study is the first to identify such activity for regulators of endocytic recycling. Our studies also support the recently emerging view that distinct mechanisms regulate junction stability and plasticity in different tissues.  相似文献   

17.
The RAD9A-RAD1-HUS1 (9-1-1) complex is a PCNA-like heterotrimeric clamp that binds damaged DNA to promote cell cycle checkpoint signaling and DNA repair. While various 9-1-1 functions in mammalian somatic cells have been established, mounting evidence from lower eukaryotes predicts critical roles in meiotic germ cells as well. This was investigated in 2 recent studies in which the 9-1-1 complex was disrupted specifically in the mouse male germline through conditional deletion of Rad9a or Hus1. Loss of these clamp subunits led to severely impaired fertility and meiotic defects, including faulty DNA double-strand break repair. While 9-1-1 is critical for ATR kinase activation in somatic cells, these studies did not reveal major defects in ATR checkpoint pathway signaling in meiotic cells. Intriguingly, this new work identified separable roles for 9-1-1 subunits, namely RAD9A- and HUS1-independent roles for RAD1. Based on these studies and the high-level expression of the paralogous proteins RAD9B and HUS1B in testis, we propose a model in which multiple alternative 9-1-1 clamps function during mammalian meiosis to ensure genome maintenance in the germline.  相似文献   

18.
Understanding how stem cells are maintained in their microenvironment (the niche) is vital for their application in regenerative medicine. Studies of Drosophila male germline stem cells (GSCs) have served as a paradigm in niche-stem cell biology. It is known that the BMP and JAK-STAT pathways are necessary for the maintenance of GSCs in the testis (Kawase et al., 2004; Kiger et al., 2001; Schulz et al., 2004; Shivdasani and Ingham, 2003; Tulina and Matunis, 2001). However, our recent work strongly suggests that BMP signaling is the primary pathway leading to GSC self-renewal (Leatherman and DiNardo, 2010). Here we show that magu controls GSC maintenance by modulating the BMP pathway. We found that magu was specifically expressed from hub cells, and accumulated at the testis tip. Testes from magu mutants exhibited a reduced number of GSCs, yet maintained a normal population of somatic stem cells and hub cells. Additionally, BMP pathway activity was reduced, whereas JAK-STAT activation was retained in mutant testes. Finally, GSC loss caused by the magu mutation could be suppressed by overactivating the BMP pathway in the germline.  相似文献   

19.
Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号