首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA damage is generated continually inside cells. In order to be able to replicate past damaged bases (translesion synthesis), the cell employs a series of specialised DNA polymerases, which singly or in combination, are able to bypass many different types of damage. The polymerases have similar structural domains to classical polymerases, but they have a more open structure to allow altered bases to fit into their active sites. Although not required for replication of undamaged DNA, some at least of these polymerases are located in replication factories. Emerging evidence suggests that the polymerase switch from replicative to translesion polymerases might be mediated by post-translational modifications.  相似文献   

2.
Replication of damaged DNA by translesion synthesis in human cells   总被引:6,自引:0,他引:6  
Lehmann AR 《FEBS letters》2005,579(4):873-876
Most types of DNA damage block the passage of the replication machinery. In order to bypass these blocks, cells employ special translesion synthesis (TLS) DNA polymerases, which have lower stringency than replicative polymerases. DNA polymerase eta is the major polymerase responsible for bypassing UV lesions in DNA and its absence results in the variant form of the genetic disorder, xeroderma pigmentosum. Other TLS polymerases have specificities for different types of damage, but their precise roles inside the cell have not yet been established. These polymerases are located in replication factories during DNA replication and the polymerase sliding clamp PCNA plays an important role in mediating switching between different polymerases.  相似文献   

3.
Individuals with Xeroderma pigmentosum (XP) syndrome have a genetic predisposition to sunlight-induced skin cancer. Genetically different forms of XP have been identified by cell fusion. Cells of individuals expressing the classical form of XP (complementation groups A through G) are deficient in the nucleotide excision repair (NER) pathway. In contrast, the cells belonging to the variant class of XP (XPV) are NER-proficient and are only slightly more sensitive than normal cells to the killing action of UV light radiation. The XPV fibroblasts replicate damaged DNA generating abnormally short fragments either in vivo [A.R. Lehmann, The relationship between pyramidine dimers and replicating DNA in UV-irradiated human fibroblasts, Nucleic Acids Res. 7 (1979) 1901-1912; S.D. Park, J.E. Cleaver, Postreplication repair: question of its definition and possible alteration in Xeroderma pigmentosum cell strains, Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 3927-3931.] or in vitro [S.M. Cordeiro, L.S. Zaritskaya, L.K. Price, W.K. Kaufmann, Replication fork bypass of a pyramidine dimer blocking leading strand DNA synthesis, J. Biol. Chem. 272 (1997) 13945-13954; D.L. Svoboda, L.P. Briley, J.M. Vos, Defective bypass replication of a leading strand cyclobutane thymine dimer in Xeroderma pigmentosum variant cell extracts, Cancer Res. 58 (1998) 2445-2448; I. Ensch-Simon, P.M. Burgers, J.S. Taylor, Bypass of a site-specific cis-syn thymine dimer in an SV40 vector during in vitro replication by HeLa and XPV cell-free extracts, Biochemistry 37 (1998) 8218-8226.], suggesting that in XPV cells, replication has an increased probability of being blocked at a lesion. Furthermore, extracts from XPV cells were found to be defective in translesion synthesis [A. Cordonnier, A.R. Lehmann, R.P.P. Fuchs, Impaired translesion synthesis in Xeroderma pigmentosum variant extracts, Mol. Cell. Biol. 19 (1999) 2206-2211.]. Recently, Masutani et al. [C. Masutani, M. Araki, A. Yamada, R. Kusomoto, T. Nogimori, T. Maekawa, S. Iwai, F. Hanaoka, Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity, EMBO J. 18 (1999) 3491-3501.] have shown that the XPV defect can be corrected by a novel human DNA polymerase, homologue to the yeast DNA polymerase eta, which is able to replicate past cyclobutane pyrimidine dimers in DNA templates. This review focuses on our current understanding of translesion synthesis in mammalian cells whose defect, unexpectedly, is responsible for the hypermutability of XPV cells and for the XPV pathology.  相似文献   

4.
Replication of damaged DNA in vitro is blocked by p53   总被引:1,自引:0,他引:1  
Zhou J  Prives C 《Nucleic acids research》2003,31(14):3881-3892
  相似文献   

5.
Lehmann AR 《Mutation research》2002,509(1-2):23-34
All cells need not only to remove damage from their DNA, but also to be able to replicate DNA containing unrepaired damage. In mammalian cells, the major process by which cells are able to replicate damaged templates is translesion synthesis, the direct synthesis of DNA past altered bases. Crucial to this process is a series of recently discovered DNA polymerases. Most of them belong to a new family of polymerases designated the Y-family, which have conserved sequences in the catalytic N-terminal half of the proteins. These polymerases have different efficiencies and specificities in vitro depending on the type of damage in the template.One of them, DNA polymerase eta, is defective in xeroderma pigmentosum variants, and overwhelming evidence suggests that this is the polymerase that carries out translesion synthesis past UV-induced cyclobutane pyrimidine dimers in vivo. DNA polymerase eta is localised in replication factories during DNA replication and accumulates at sites of stalled replication forks. Many studies have been carried out on the properties of the other polymerases in vitro, but there is as yet very little evidence for their specific roles in vivo.  相似文献   

6.
Lao Y  Gomes XV  Ren Y  Taylor JS  Wold MS 《Biochemistry》2000,39(5):850-859
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein (subunits of 70, 32, and 14 kDa) that is required for cellular DNA metabolism. RPA has been reported to interact specifically with damaged double-stranded DNA and to participate in multiple steps of nucleotide excision repair (NER) including the damage recognition step. We have examined the mechanism of RPA binding to both single-stranded and double-stranded DNA (ssDNA and dsDNA, respectively) containing damage. We show that the affinity of RPA for damaged dsDNA correlated with disruption of the double helix by the damaged bases and required RPAs ssDNA-binding activity. We conclude that RPA is recognizing single-stranded character caused by the damaged nucleotides. We also show that RPA binds specifically to damaged ssDNA. The specificity of binding varies with the type of damage with RPA having up to a 60-fold preference for a pyrimidine(6-4)pyrimidone photoproduct. We show that this specific binding was absolutely dependent on the zinc-finger domain in the C-terminus of the 70-kDa subunit. The affinity of RPA for damaged ssDNA was 5 orders of magnitude higher than that of the damage recognition protein XPA (xeroderma pigmentosum group A protein). These findings suggest that RPA probably binds to both damaged and undamaged strands in the NER excision complex. RPA binding may be important for efficient excision of damaged DNA in NER.  相似文献   

7.
DNA Demethylation and Carcinogenesis   总被引:2,自引:0,他引:2  
DNA methylation plays an important role in the establishment and maintenance of the program of gene expression. Tumor cells are characterized by a paradoxical alteration of DNA methylation pattern: global DNA demethylation and local hypermethylation of certain genes. Hypermethylation and inactivation of tumor suppressor genes are well documented in tumors. The role of global genome demethylation in carcinogenesis is less studied. New data provide evidence for independence of DNA hypo- and hypermethylation processes in tumor cells. These processes alter expression of genes that have different functions in malignant transformation. Recent studies have demonstrated that global decrease in the level of DNA methylation is related to hypomethylation of repeated sequences, increase in genetic instability, hypomethylation and activation of certain genes that favor tumor growth, and increase in their metastatic and invasive potential. The recent data on the role of DNA demethylation in carcinogenesis are discussed in this review. The understanding of relationships between hypo- and hypermethylation in tumor cells is extremely important due to reversibility of DNA methylation and attempts to utilize for anti-tumor therapy the drugs that modify DNA methylation pattern.__________Translated from Biokhimiya, Vol. 70, No. 7, 2005, pp. 900–911.Original Russian Text Copyright © 2005 by Kisseljova, Kisseljov.This article was not published in the journal special issue devoted to the 70th anniversary of B. F. Vanyushin (Biochemistry (Moscow) (2005) 70, No. 5) because of the limiting volume of the journal.  相似文献   

8.
9.
The hypothesis of the exclusively genetic origin of cancer (cancer is a disease of genes, a tumor without any damage to the genome does not exist) dominated in the oncology until recently. A considerable amount of data confirming this hypothesis was accumulated during the last quarter of the last century. It was demonstrated that the accumulation of damage of specific genes lies at the origin of a tumor and its following progression. The damage gives rise to structural changes in the respective proteins and, consequently, to inappropriate mitogenic stimulation of cells (activation of oncogenes) or to the inactivation of tumor suppressor genes that inhibit cell division, or to the combination of both (in most cases). According to an alternative (epigenetic) hypothesis that was extremely unpopular until recently, a tumor is caused not by a gene damage, but by an inappropriate function of genes (cancer is a disease of gene regulation and differentiation). However, recent studies led to the convergence of these hypotheses that initially seemed to be contradictory. It was established that both factors–genetic and epigenetic–lie at the origin of carcinogenesis. The relative contribution of each varies significantly in different human tumors. Suppressor genes and genes of repair are inactivated in tumors due to their damage or methylation of their promoters (in the latter case an epimutation, an epigenetic equivalent of a mutation, occurs, producing the same functional consequences). It is becoming evident that not only the mutagens, but various factors influencing cell metabolism, notably methylation, should be considered as carcinogens.  相似文献   

10.
11.
12.
13.
14.
Rolling-circle replication is initiated by a replicon-encoded endonuclease which introduces a single-strand nick into specific origin sequences, becoming covalently attached to the 5′ end of the DNA at the nick and providing a 3′ hydroxyl to prime unidirectional, leading-strand synthesis. Parvoviruses, such as minute virus of mice (MVM), have adapted this mechanism to amplify their linear single-stranded genomes by using hairpin telomeres which sequentially unfold and refold to shuttle the replication fork back and forth along the genome, creating a continuous, multimeric DNA strand. The viral initiator protein, NS1, then excises individual genomes from this continuum by nicking and reinitiating synthesis at specific origins present within the hairpin sequences. Using in vitro assays to study ATP-dependent initiation within the right-hand (5′) MVM hairpin, we have characterized a HeLa cell factor which is absolutely required to allow NS1 to nick this origin. Unlike parvovirus initiation factor (PIF), the cellular complex which activates NS1 endonuclease activity at the left-hand (3′) viral origin, the host factor which activates the right-hand hairpin elutes from phosphocellulose in high salt, has a molecular mass of around 25 kDa, and appears to bind preferentially to structured DNA, suggesting that it might be a member of the high-mobility group 1/2 (HMG1/2) protein family. This prediction was confirmed by showing that purified calf thymus HMG1 and recombinant human HMG1 or murine HMG2 could each substitute for the HeLa factor, activating the NS1 endonuclease in an origin-specific nicking reaction.  相似文献   

15.
16.
17.
DNA Replication in the Archaea   总被引:11,自引:0,他引:11       下载免费PDF全文
The archaeal DNA replication machinery bears striking similarity to that of eukaryotes and is clearly distinct from the bacterial apparatus. In recent years, considerable advances have been made in understanding the biochemistry of the archaeal replication proteins. Furthermore, a number of structures have now been obtained for individual components and higher-order assemblies of archaeal replication factors, yielding important insights into the mechanisms of DNA replication in both archaea and eukaryotes.  相似文献   

18.
During replication, the topology of DNA changes continuously in response to well-known activities of DNA helicases, polymerases, and topoisomerases. However, replisomes do not always progress at a constant speed and can slow-down and even stall at precise sites. The way these changes in the rate of replisome progression affect DNA topology is not yet well understood. The interplay of DNA topology and replication in several cases where progression of replication forks reacts differently to changes in DNA topology ahead is discussed here. It is proposed, there are at least two types of replication fork barriers: those that behave also as topological barriers and those that do not. Two-Dimensional (2D) agarose gel electrophoresis is the method of choice to distinguish between these two different types of replication fork barriers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号