首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Kang R  Livesey KM  Zeh HJ  Loze MT  Tang D 《Autophagy》2010,6(8):1209-1211
The autophagosome delivers damaged cytoplasmic constituents and proteins to the lysosome or to the extracellular space. Beclin 1, an essential: autophagic protein, is a BH3-only protein that binds Bcl-2 anti-apoptotic family members and has a critical role in the initiation of autophagy. How the Beclin 1 complex specifically promotes autophagy remains largely unknown. We have found that high mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage associated molecular pattern molecule (DAMP), is a novel Beclin 1-binding protein important in sustaining autophagy. HMGB1 shares considerable sequence homology with Beclin 1 in yeast, mice and human, representing an evolutionarily conserved regulatory step in early autophagosome formation. Endogenous HMGB1 competes with Bcl-2 for interaction with Beclin 1, and orients Beclin 1 to autophagosomes. Moreover, the intramolecular disulfide bridge (C23/45) of HMGB1 is required for binding to Beclin 1 and sustaining autophagy. Taken together, these findings indicate that endogenous HMGB1 functions as an autophagy effector by regulation of autophagosome formation.  相似文献   

2.
Autophagy, the degradation of cytoplasmic components, is an evolutionarily conserved homeostatic process involved in environmental adaptation, lifespan determination and tumour development. The tumor suppressor Beclin1 is part of the PI(3) kinase class III (PI(3)KC3) lipid-kinase complex that induces autophagy. The autophagic activity of the Beclin1-PI(3)KC3 complex, however, is suppressed by Bcl-2. Here, we report the identification of a novel coiled-coil UV irradiation resistance-associated gene (UVRAG) as a positive regulator of the Beclin1-PI(3)KC3 complex. UVRAG, a tumour suppressor candidate that is monoallelically mutated at high frequency in human colon cancers, associates with the Beclin1-Bcl-2-PI(3)KC3 multiprotein complex, where UVRAG and Beclin1 interdependently induce autophagy. UVRAG-mediated activation of the Beclin1-PI(3)KC3 complex promotes autophagy and also suppresses the proliferation and tumorigenicity of human colon cancer cells. These results identify UVRAG as an essential component of the Beclin1-PI(3)KC3 lipid kinase complex that is an important signalling checkpoint for autophagy and tumour-cell growth.  相似文献   

3.
《Autophagy》2013,9(5):713-716
Class III phosphatidylinositol 3-kinase (PI3KC3) plays a pleiotropic role in autophagy and protein sorting pathways. The human core complex of PI3KC3 consists of three major components including PI3KC3/hVps34, p150 and Beclin 1. How the specificity of PI3KC3 complex is derived towards autophagy is not clear. Utilizing a sequential affinity purification coupled with Mass spectrometry approach, we have successfully purified a human Beclin 1 complex and cloned a novel protein we called Barkor (Beclin 1-associated autophagy-related key regulator). The function of Barkor in autophagy has been manifested in several assays, including stress-induced LC3 lipidation, autophagosome formation, and Salmonella typhimurium amplification. Mechanistically, Barkor competes with UV radiation resistance associated gene product (UVRAG) for interaction with Beclin 1, and orients Beclin1 to autophagosomes. Barkor shares considerable sequence homology with Atg14 in yeast, representing an evolutionary conserved autophagy specific regulatory step in early autophagosome formation.  相似文献   

4.
Autophagy clears long-lived proteins and dysfunctional organelles and generates substrates for adenosine triphosphate production during periods of starvation and other types of cellular stress. Here we show that high mobility group box 1 (HMGB1), a chromatin-associated nuclear protein and extracellular damage-associated molecular pattern molecule, is a critical regulator of autophagy. Stimuli that enhance reactive oxygen species promote cytosolic translocation of HMGB1 and thereby enhance autophagic flux. HMGB1 directly interacts with the autophagy protein Beclin1 displacing Bcl-2. Mutation of cysteine 106 (C106), but not the vicinal C23 and C45, of HMGB1 promotes cytosolic localization and sustained autophagy. Pharmacological inhibition of HMGB1 cytoplasmic translocation by agents such as ethyl pyruvate limits starvation-induced autophagy. Moreover, the intramolecular disulfide bridge (C23/45) of HMGB1 is required for binding to Beclin1 and sustaining autophagy. Thus, endogenous HMGB1 is a critical pro-autophagic protein that enhances cell survival and limits programmed apoptotic cell death.  相似文献   

5.
Autophagy is postulated to play a role in antiviral innate immunity. However, it is unknown whether viral evasion of autophagy is important in disease pathogenesis. Here we show that the herpes simplex virus type 1 (HSV-1)-encoded neurovirulence protein ICP34.5 binds to the mammalian autophagy protein Beclin 1 and inhibits its autophagy function. A mutant HSV-1 virus lacking the Beclin 1-binding domain of ICP34.5 fails to inhibit autophagy in neurons and demonstrates impaired ability to cause lethal encephalitis in mice. The neurovirulence of this Beclin 1-binding mutant virus is restored in pkr(-/-) mice. Thus, ICP34.5-mediated antagonism of the autophagy function of Beclin 1 is essential for viral neurovirulence, and the antiviral signaling molecule PKR lies genetically upstream of Beclin 1 in host defense against HSV-1. Our findings suggest that autophagy inhibition is a novel molecular mechanism by which viruses evade innate immunity and cause fatal disease.  相似文献   

6.
Autophagy is activated early after human cytomegalovirus (HCMV) infection but, later on, the virus blocks autophagy. Here we characterized 2 HCMV proteins, TRS1 and IRS1, which inhibit autophagy during infection. Expression of either TRS1 or IRS1 was able to block autophagy in different cell lines, independently of the EIF2S1 kinase, EIF2AK2/PKR. Instead, TRS1 and IRS1 interacted with the autophagy protein BECN1/Beclin 1. We mapped the BECN1-binding domain (BBD) of IRS1 and TRS1 and found it to be essential for autophagy inhibition. Mutant viruses that express only IRS1 or TRS1 partially controlled autophagy, whereas a double mutant virus expressing neither protein stimulated autophagy. A mutant virus that did not express IRS1 and expressed a truncated form of TRS1 in which the BBD was deleted, failed to control autophagy. However, this mutant virus had similar replication kinetics as wild-type virus, suggesting that autophagy inhibition is not critical for viral replication. In fact, using pharmacological modulators of autophagy and inhibition of autophagy by shRNA knockdown, we discovered that stimulating autophagy enhanced viral replication. Conversely, inhibiting autophagy decreased HCMV infection. Thus, our results demonstrate a new proviral role of autophagy for a DNA virus.  相似文献   

7.
Human cytomegalovirus modulates macroautophagy in two opposite directions. First, HCMV stimulates autophagy during the early stages of infection, as evident by an increase in the number of autophagosomes and a rise in the autophagic flux. This stimulation occurs independently of de novo viral protein synthesis since UV-inactivated HCMV recapitulates the stimulatory effect on macroautophagy. At later time points of infection, HCMV blocks autophagy (M. Chaumorcel, S. Souquere, G. Pierron, P. Codogno, and A. Esclatine, Autophagy 4:1-8, 2008) by a mechanism that requires de novo viral protein expression. Exploration of the mechanisms used by HCMV to block autophagy unveiled a robust increase of the cellular form of Bcl-2 expression. Although this protein has an anti-autophagy effect via its interaction with Beclin 1, it is not responsible for the inhibition induced by HCMV, probably because of its phosphorylation by c-Jun N-terminal kinase. Here we showed that the HCMV TRS1 protein blocks autophagosome biogenesis and that a TRS1 deletion mutant is defective in autophagy inhibition. TRS1 has previously been shown to neutralize the PKR antiviral effector molecule. Although phosphorylation of eIF2α by PKR has been described as a stimulatory signal to induce autophagy, the PKR-binding domain of TRS1 is dispensable to its inhibitory effect. Our results show that TRS1 interacts with Beclin 1 to inhibit autophagy. We mapped the interaction with Beclin 1 to the N-terminal region of TRS1, and we demonstrated that the Beclin 1-binding domain of TRS1 is essential to inhibit autophagy.  相似文献   

8.
Huang J  Liu K  Yu Y  Xie M  Kang R  Vernon P  Cao L  Tang D  Ni J 《Autophagy》2012,8(2):275-277
Autophagy is a catabolic process critical to maintaining cellular homeostasis and responding to cytotoxic insult. Autophagy is recognized as "programmed cell survival" in contrast to apoptosis or programmed cell death. Upregulation of autophagy has been observed in many types of cancers and has been demonstrated to both promote and inhibit antitumor drug resistance depending to a large extent on the nature and duration of the treatment-induced metabolic stress as well as the tumor type. Cisplatin, doxorubicin and methotrexate are commonly used anticancer drugs in osteosarcoma, the most common form of childhood and adolescent cancer. Our recent study demonstrated that high mobility group box 1 protein (HMGB1)-mediated autophagy is a significant contributor to drug resistance in osteosarcoma cells. Inhibition of both HMGB1 and autophagy increase the drug sensitivity of osteosarcoma cells in vivo and in vitro. Furthermore, we demonstrated that the ULK1-FIP200 complex is required for the interaction between HMGB1 and BECN1, which then promotes BECN1-PtdIns3KC3 complex formation during autophagy. Thus, these findings provide a novel mechanism of osteosarcoma resistance to therapy facilitated by HMGB1-mediated autophagy and provide a new target for the control of drug-resistant osteosarcoma patients.  相似文献   

9.
Li H  Wang P  Yu J  Zhang L 《Autophagy》2011,7(10):1239-1241
Autophagy is often found in apoptosis-defective cancer cells and contributes to chemotherapy resistance. However, it is far from clear how the coordination of apoptosis and autophagy determines sensitivity of cancer cells to chemotherapy. Our recent study showed that Beclin 1, a key regulator of autophagy, is cleaved by caspase 8 at the execution stage of chemotherapy-induced and mitochondria-mediated apoptosis. Perturbation of Beclin 1 cleavage, by knock-in of a mutation, phenocopies the autophagy observed in apoptosis-defective cancer cells, and renders chemotherapy resistance in vitro and in vivo. These results demonstrate an important role of caspases in suppressing autophagy by cleaving autophagic machinery.  相似文献   

10.
《Autophagy》2013,9(10):1239-1241
Autophagy is often found in apoptosis-defective cancer cells and contributes to chemotherapy resistance. However, it is far from clear how the coordination of apoptosis and autophagy determines sensitivity of cancer cells to chemotherapy. Our recent study showed that Beclin 1, a key regulator of autophagy, is cleaved by caspase 8 at the execution stage of chemotherapy-induced and mitochondria-mediated apoptosis. Perturbation of Beclin 1 cleavage, by knock-in of a mutation, phenocopies the autophagy observed in apoptosis-defective cancer cells, and renders chemotherapy resistance in vitro and in vivo. These results demonstrate an important role of caspases in suppressing autophagy by cleaving autophagic machinery.  相似文献   

11.
《Autophagy》2013,9(10):1873-1876
HMGB1 (high mobility group box 1) is a multifunctional, ubiquitous protein located inside and outside cells that plays a critical role in various physiological and pathological processes including cell development, differentiation, inflammation, immunity, metastasis, metabolism, and death. Increasing evidence demonstrates that HMGB1-dependent autophagy promotes chemotherapy resistance, sustains tumor metabolism requirements and T cell survival, prevents polyglutamine aggregates and excitotoxicity, and protects against endotoxemia, bacterial infection, and ischemia-reperfusion injury in vitro or in vivo. In contrast, HMGB1 may not be required for autophagy in some organs such as the liver and heart. Understanding HMGB1-dependent and -independent autophagy in more detail will provide insight into the integrated stress response and guide HMGB1-based therapeutic intervention.  相似文献   

12.
Xiaofang Sun  Daolin Tang 《Autophagy》2014,10(10):1873-1876
HMGB1 (high mobility group box 1) is a multifunctional, ubiquitous protein located inside and outside cells that plays a critical role in various physiological and pathological processes including cell development, differentiation, inflammation, immunity, metastasis, metabolism, and death. Increasing evidence demonstrates that HMGB1-dependent autophagy promotes chemotherapy resistance, sustains tumor metabolism requirements and T cell survival, prevents polyglutamine aggregates and excitotoxicity, and protects against endotoxemia, bacterial infection, and ischemia-reperfusion injury in vitro or in vivo. In contrast, HMGB1 may not be required for autophagy in some organs such as the liver and heart. Understanding HMGB1-dependent and -independent autophagy in more detail will provide insight into the integrated stress response and guide HMGB1-based therapeutic intervention.  相似文献   

13.
《Autophagy》2013,9(2):275-277
Autophagy is a catabolic process critical to maintaining cellular homeostasis and responding to cytotoxic insult. Autophagy is recognized as “programmed cell survival” in contrast to apoptosis or programmed cell death. Upregulation of autophagy has been observed in many types of cancers and has been demonstrated to both promote and inhibit antitumor drug resistance depending to a large extent on the nature and duration of the treatment-induced metabolic stress as well as the tumor type. Cisplatin, doxorubicin and methotrexate are commonly used anticancer drugs in osteosarcoma, the most common form of childhood and adolescent cancer. Our recent study demonstrated that high mobility group box 1 protein (HMGB1)-mediated autophagy is a significant contributor to drug resistance in osteosarcoma cells. Inhibition of both HMGB1 and autophagy increase the drug sensitivity of osteosarcoma cells in vivo and in vitro. Furthermore, we demonstrated that the ULK1-FIP200 complex is required for the interaction between HMGB1 and BECN1, which then promotes BECN1-PtdIns3KC3 complex formation during autophagy. Thus, these findings provide a novel mechanism of osteosarcoma resistance to therapy facilitated by HMGB1-mediated autophagy and provide a new target for the control of drug-resistant osteosarcoma patients.  相似文献   

14.
《Autophagy》2013,9(7):947-948
Beclin 1 is a critical component in the class III PI3 kinase complex (PI3KC3) that induces the formation of autophagosomes in mammalian systems. Autophagic triggers upregulate Beclin 1, which in turn binds to PI3KC3 or Bcl-XL to form complexes of Beclin 1-PI3KC3 or Beclin 1-Bcl-XL that are physically and functionally independent from each other. Contrary to the previous observations that Beclin 1 binding to Bcl-2 family members is apoptotic and antiautophagic, we found that autophagic trigger-induced Beclin 1-binding to Bcl-XL is antiapoptotic and has no effect on autophagy, suggesting a convertible role of the Beclin 1-Bcl-XL complex in response to autophagy stimuli. Both autophagy and differentiation cascades require upregulation of Beclin 1. While the basal Beclin 1 level does not cause autophagy or differentiation, depletion of Beclin 1 cripples both autophagy and differentiation capabilities, but activates apoptosis. These results demonstrate that Beclin 1 is essential for autophagy, differentiation and antiapoptosis, and may play an important role in coordinating inputs for cellular decisions to signaling machinery that mediates different cellular cascades.

Addendum to: Wang J, Lian H, Zhao Y, Kauss MA, Spindel S. Vitamin D3 induces autophagy of human myeloid leukemia cells. J Biol Chem 2008; doi:10.1074/jbc.  相似文献   

15.
Beclin 1, the mammalian orthologue of yeast Atg6, has a central role in autophagy, a process of programmed cell survival, which is increased during periods of cell stress and extinguished during the cell cycle. It interacts with several cofactors (Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, nPIST, VMP1, SLAM, IP(3)R, PINK and survivin) to regulate the lipid kinase Vps-34 protein and promote formation of Beclin 1-Vps34-Vps15 core complexes, thereby inducing autophagy. In contrast, the BH3 domain of Beclin 1 is bound to, and inhibited by Bcl-2 or Bcl-XL. This interaction can be disrupted by phosphorylation of Bcl-2 and Beclin 1, or ubiquitination of Beclin 1. Interestingly, caspase-mediated cleavage of Beclin 1 promotes crosstalk between apoptosis and autophagy. Beclin 1 dysfunction has been implicated in many disorders, including cancer and neurodegeneration. Here, we summarize new findings regarding the organization and function of the Beclin 1 network in cellular homeostasis, focusing on the cross-regulation between apoptosis and autophagy.  相似文献   

16.
Wang J 《Autophagy》2008,4(7):947-948
Beclin 1 is a critical component in the class III PI3 kinase complex (PI3KC3) that induces the formation of autophagosomes in mammalian systems. Autophagic triggers upregulate Beclin 1, which in turn binds to PI3KC3 or Bcl-X(L) to form complexes of Beclin 1-PI3KC3 or Beclin 1-Bcl-X(L) that are physically and functionally independent from each other. Contrary to the previous observations that Beclin 1 binding to Bcl-2 family members is apoptotic and antiautophagic, we found that autophagic trigger-induced Beclin 1-binding to Bcl-X(L) is antiapoptotic and has no effect on autophagy, suggesting a convertible role of the Beclin 1-Bcl-X(L) complex in response to autophagy stimuli. Both autophagy and differentiation cascades require upregulation of Beclin 1. While the basal Beclin 1 level does not cause autophagy or differentiation, depletion of Beclin 1 cripples both autophagy and differentiation capabilities, but activates apoptosis. These results demonstrate that Beclin 1 is essential for autophagy, differentiation and antiapoptosis, and may play an important role in coordinating inputs for cellular decisions to signaling machinery that mediates different cellular cascades.  相似文献   

17.
HMGB1 (high mobility group box 1), a ubiquitously expressed DNA-binding nucleoprotein, has not only been attributed with important functions in the regulation of gene expression but is thought to function as an important damage-associated molecular pattern in the extracellular space. Recently, conditional Hmgb1 deletion strategies have been employed to overcome the perinatal mortality of global Hmgb1 deletion and to understand HMGB1 functions under disease conditions. From these studies, it has become evident that HMGB1 is not required for normal organ function. However, the different conditional ablation strategies have yielded contradictory results in some disease models. With nearly complete recombination in all transgenic mouse models, the main reason for opposite results is likely to lie within different targeting strategies. In summary, different targeting strategies need to be taken into account when interpreting HMGB1 functions, and further efforts need to be undertaken to compare these models side by side.We appreciate the thoughtful analysis on HMGB1-dependent and -independent autophagy by Sun and Tang.1 However, we disagree with several statements in this review. Sun and Tang write “Mice with hepatocyte-specific deletion of Hmgb1 from Robert Schwabe''s lab are not complete conditional knockout mice; the protein level of HMGB1 in the liver is decreased by about 70%,” as well as “a major difference between Robert Schwabe''s engineered HMGB1 mice and other groups is the tissue-level expression of HMGB1 after knockout.”1We would like to point out that livers are not solely composed of hepatocytes and that albumin-Cre mediated deletion of target genes in the liver cannot result in complete loss of hepatic mRNA or protein of target genes due to the presence of unrecombined nonparenchymal cells, unless the target gene is exclusively expressed in hepatocytes and/or cholangiocytes. The reduction of hepatic HMGB1 in our studies—reaching 90% and 72% at the mRNA and protein level, respectively—is precisely at the expected level for this conditional strategy, and similar to other studies that employed albumin-Cre for hepatocyte-specific knockout of other target genes.2-5 Hepatocytes account only for approximately 52% of cells in the liver, with other cell types including Kupffer cells (∼18% of liver cells), hepatic stellate cells (˜8% of liver cells), endothelial cells (∼22% cells of liver cells) and cholangiocytes (<1 % of liver cells) contributing to the remainder.6 Accordingly, albumin-Cre-mediated reduction of mRNA and protein levels of target genes (i.e., Hmgb1 and HMGB1 in our study) in the liver cannot exceed the amount of mRNA and protein expressed by hepatocytes and cholangiocytes (which is typically about 70–90%,2-5 due to higher mRNA and protein levels in hepatocytes than in other hepatic cell types). The high efficacy of our conditional approach is best demonstrated by almost complete loss of HMGB1 expression in the hepatocellular compartment of albumin-Cre mice—as evidenced by loss of HMGB1 expression in all HNF4α-positive cells and in isolated primary hepatocytes—whereas HMGB1 expression is retained in nonparenchymal cells, as demonstrated by costaining for Kupffer cell marker F4/80, endothelial cell marker endomucin, and hepatic stellate cell marker desmin.7,8 The nearly perfect recombination rate in our mice was further confirmed by experiments that employed Mx1Cre for Hmgb1 deletion, which resulted in almost complete loss of hepatic Hmgb1 mRNA and HMGB1 protein.7,8 Moreover, our transgenic mice show early postnatal mortality when bred with a germline Cre deleter,7 thus reproducing the phenotype of the global HMGB1 knockout.9In summary, our transgenic mouse model results in nearly perfect recombination efficiency with virtually complete loss of Hmgb1 mRNA and HMGB1 protein in all targeted cell types, and constitutes a valid tool for the assessment of HMGB1 functions in vivo. Findings from this model need to be taken into account for proper interpretation of the role of HMGB1 in the normal and diseased liver, and cannot be interpreted as a result of incomplete deletion efficiency. Hence, differences in targeting strategies (exons 2–4 by our approach, exons 2–3 in mice from Tang and colleagues) are likely to explain opposite findings, e.g. improvement of ischemia-reperfusion injury in our hands, but aggravation of liver damage in the study by Huang et al.8,10 Further analysis needs to be performed to determine whether ablation of exons 2–3 versus exons 2–4 leads to complete loss of HMGB1 function.  相似文献   

18.
《Autophagy》2013,9(2):247-249
The characteristics of tumor cell killing by an anti-cancer agent can determine the long-term effectiveness of the treatment. For example, if dying tumor cells release the immune modulator HMGB1 after treatment with anti-cancer drugs, they can activate a tumor-specific immune response that boosts the effectiveness of the initial treatment. Recent work from our group examined the mechanism of action of a targeted toxin called DT-EGF that selectively kills Epidermal Growth Factor Receptor-expressing tumor cells. We found that DT-EGF kills glioblastoma cells by a caspase-independent mechanism that involves high levels of autophagy, which inhibits cell death by blocking apoptosis. In contrast, DT-EGF kills epithelial tumor cells by caspase-dependent apoptosis and in these cells autophagy is not induced. These differences allowed us to discover that the different death mechanisms were associated with differences in the release of HMGB1 and that autophagy induction is required and sufficient to cause release of HMGB1 from the dying cells. These data identify a new function for autophagy during cell death and open up the possibility of manipulating autophagy during cancer treatment as a way to influence the immunogenicity of dying tumor cells.  相似文献   

19.
High mobility group box chromosomal protein 1 (HMGB1) is a lethal mediator of systemic inflammation, and its A box domain is isolated as an antagonist of HMGB1. To enhance its expression level and its anti-HMGB1 effect, the A box cDNA was coupled with the sequence encoding lectin-like domain of thrombomodulin (TMD1). The fusion DNA fragment was ligated into the prokaryotic expression vector pQE-80L to construct the recombinant plasmid pQE80L-A/TMD1. The plasmid was then transformed into Escherichia coli DH5α, and the recombinant fusion protein A/TMD1 was expressed at 37°C for 4 h, with induction by IPTG at the final concentration of 0.2 mM. The expression level of the fusion protein was up to 40% of the total cellular protein. The fusion protein was purified by Ni-NTA chromatography and the purity was about 95%. After passing over a polymyxin B column to remove any contaminating lipopolysaccharides, the purified protein was tested for its anti-inflammatory activity. Our data show that A/TMD1 significantly inhibits HMGB1-induced TNF-α release and might be useful in treating HMGB1-elevated sepsis.  相似文献   

20.
Neuronal autophagy is enhanced in many neurological conditions, such as cerebral ischemia and traumatic brain injury, but its role in associated neuronal death is controversial, especially under conditions of apoptosis. We therefore investigated the role of autophagy in the apoptosis of primary cortical neurons treated with the widely used and potent pro-apoptotic agent, staurosporine (STS). Even before apoptosis, STS enhanced autophagic flux, as shown by increases in autophagosomal (LC3-II level, LC3 punctate labeling) and lysosomal (cathepsin D, LAMP1, acid phosphatase, β-hexasominidase) markers. Inhibition of autophagy by 3-methyladenine, or by lentivirally-delivered shRNAs against Atg5 and Atg7, strongly reduced the STS-induced activation of caspase-3 and nuclear translocation of AIF, and gave partial protection against neuronal death. Pan-caspase inhibition with Q-VD-OPH likewise protected partially against neuronal death, but failed to affect autophagy. Combined inhibition of both autophagy and caspases gave strong synergistic neuroprotection. The autophagy contributing to apoptosis was Beclin 1-independent, as shown by the fact that Beclin 1 knockdown failed to reduce it but efficiently reduced rapamycin-induced autophagy. Moreover the Beclin 1 knockdown sensitized neurons to STS-induced apoptosis, indicating a cytoprotective role of Beclin 1 in cortical neurons. Caspase-3 activation and pyknosis induced by two other pro-apoptotic stimuli, MK801 and etoposide, were likewise found to be associated with Beclin 1-independent autophagy and reduced by the knockdown of Atg7 but not Beclin 1. In conclusion, Beclin 1-independent autophagy is an important contributor to both the caspase-dependent and -independent components of neuronal apoptosis and may be considered as an important therapeutic target in neural conditions involving apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号