首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aven is a regulator of the DNA damage response and G2/M cell cycle progression. Overexpression of Aven is associated with poor prognosis in patients with childhood acute lymphoblastic leukemia and acute myeloid leukemia, and altered intracellular Aven distribution is associated with infiltrating ductal carcinoma and papillary carcinoma breast cancer subtypes. Although Aven orthologs have been identified in most vertebrate species, no Aven gene has been reported in invertebrates. Here, we describe a Drosophila melanogaster open reading frame (ORF) that shares sequence and functional similarities with vertebrate Aven genes. The protein encoded by this ORF, which we named dAven, contains several domains that are highly conserved among Aven proteins of fish, amphibian, bird and mammalian origins. In flies, knockdown of dAven by RNA interference (RNAi) resulted in lethality when its expression was reduced either ubiquitously or in fat cells using Gal4 drivers. Animals undergoing moderate dAven knockdown in the fat body had smaller fat cells displaying condensed chromosomes and increased levels of the mitotic marker phosphorylated histone H3 (PHH3), suggesting that dAven was required for normal cell cycle progression in this tissue. Remarkably, expression of dAven in Xenopus egg extracts resulted in G2/M arrest that was comparable to that caused by human Aven. Taken together, these results suggest that, like its vertebrate counterparts, dAven plays a role in cell cycle regulation. Drosophila could be an excellent model for studying the function of Aven and identifying cellular factors that influence its activity, revealing information that may be relevant to human disease.Key words: Drosophila melanogaster, Aven, Ataxia telangiectasia mutated, ATM and Rad 3-related, cell cycle, checkpoint  相似文献   

2.
Aven is a regulator of apoptosis whose overexpression is associated with poor prognosis in several cancers, including childhood acute lymphoblastic leukemia and acute myeloid leukemia. We have recently shown that Aven serves as an activator and substrate of ATM, thereby modulating the DNA-damage response and G2/M cell cycle progression. Under physiological conditions, the cellular localization of Aven is mainly cytosolic, but a small fraction of the protein is present in the nucleus. Here, we show that treatment of cells with leptomycin B, an inhibitor of Exportin-1/CRM (chromosomal region maintenance) 1, resulted in nuclear accumulation of Aven. Furthermore, we identified a functional LR-NES between amino acid residues 282-292 of the human Aven protein, a sequence that is evolutionary conserved among a range of vertebrate species. Disruption of this LR-NES by site-directed mutagenesis resulted in enhanced nuclear localization of Aven, but did not alter the ability of the protein to induce G2/M cell cycle arrest in interphase Xenopus laevis extracts. However, elimination of the LR-NES sequence led to a reduction in the capacity of Aven to arrest Xenopus oocytes containing intact nuclei. Our results suggest that the regulation of nucleocytoplasmatic traffic of Aven could modulate its ability to influence cell cycle progression.  相似文献   

3.
We have analyzed the expression and function of the cell death and cell cycle regulator Aven in Xenopus. Analysis of Xenopus Aven expression in oocytes and embryos revealed a band close to the predicted molecular weight of the protein (36 kDa) in addition to two bands of higher molecular weight (46 and 49 kDa), one of which was determined to be due to phosphorylation of the protein. The protein is primarily detected in the cytoplasm of oocytes and is tightly regulated during meiotic and mitotic cell cycles. Progesterone stimulation of oocytes resulted in a rapid loss of Aven expression with the protein levels recovering before germinal vesicle breakdown (GVBD). This loss of Aven is required for the G2–M1 cell cycle transition. Aven morpholino knockdown experiments revealed that early depletion of the protein increases progesterone sensitivity and facilitates GVBD, but prolonged depletion of Aven results in caspase-3 activation and oocyte death by apoptosis. Phosphorylated Aven (46 kDa) was found to bind Bcl-xL in oocytes, but this interaction was lost in apoptotic oocytes. Thus, Aven alters progesterone sensitivity in oocytes and is critical for oocyte survival.  相似文献   

4.
Cellulose synthesis, but not its degradation, is generally thought to be required for plant cell growth. In this work, we cloned a dinoflagellate cellulase gene, dCel1, whose activities increased significantly in G2/M phase, in agreement with the significant drop of cellulose content reported previously. Cellulase inhibitors not only caused a delay in cell cycle progression at both the G1 and G2/M phases in the dinoflagellate Crypthecodinium cohnii, but also induced a higher level of dCel1p expression. Immunostaining results revealed that dCel1p was mainly localized at the cell wall. Accordingly, the possible role of cellulase activity in cell cycle progression was tested by treating synchronized cells with exogenous dCelp and purified antibody, in experiments analogous to overexpression and knockdown analyses, respectively. Cell cycle advancement was observed in cells treated with exogenous dCel1p, whereas the addition of purified antibody resulted in a cell cycle delay. Furthermore, delaying the G2/M phase independently with antimicrotubule inhibitors caused an abrupt and reversible drop in cellulase protein level. Our results provide a conceptual framework for the coordination of cell wall degradation and reconstruction with cell cycle progression in organisms with cell walls. Since cellulase activity has a direct bearing on the cell size, the coupling between cellulase expression and cell cycle progression can also be considered as a feedback mechanism that regulates cell size.  相似文献   

5.
6.
Varicella-zoster virus (VZV) activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway and alters cell cycle progression, but the viral protein(s) responsible for these activities is unknown. We previously reported that the VZV open reading frame 12 (ORF12) protein triggers phosphorylation of ERK. Here, we demonstrate that the VZV ORF12 protein also activates the PI3K/Akt pathway to regulate cell cycle progression. Transfection of cells with a plasmid expressing the ORF12 protein induced phosphorylation of Akt, which was dependent on PI3K. Infection of cells with wild-type VZV triggered phosphorylation of Akt, while infection with an ORF12 deletion mutant induced less phosphorylated Akt. The activation of Akt by ORF12 protein was associated with its binding to the p85 subunit of PI3K. Infection of cells with wild-type VZV resulted in increased levels of cyclin B1, cyclin D3, and phosphorylated glycogen synthase kinase 3β (GSK-3β), while infection with the ORF12 deletion mutant induced lower levels of these proteins. Wild-type VZV infection reduced the G1 phase cell population and increased the M phase cell population, while infection with the ORF12 deletion mutant had a reduced effect on the G1 and M phase populations. Inhibition of Akt activity with LY294002 reduced the G1 and M phase differences observed in cells infected with wild-type and ORF12 mutant viruses. In conclusion, we have found that the VZV ORF12 protein activates the PI3K/Akt pathway to regulate cell cycle progression. Since VZV replicates in both dividing (e.g., keratinocytes) and nondividing (neurons) cells, the ability of the VZV ORF12 protein to regulate the cell cycle is likely important for VZV replication in various cell types in the body.  相似文献   

7.
8.
We prepared single cell clones from two ovarian carcinoma cell lines, CA-OV3 and SK-OV3, and analyzed the effect of all-trans-RA treatment on cell division, DNA synthesis, and cell cycle stage distribution of these single cell clones. Our results show that despite the well-known heterogeneous nature of these cell lines, all single cell clones of SK-OV3 cells are resistant to the growth inhibitory effects of all-trans-RA. In contrast, all single cell clones of CA-OV3 cells were growth inhibited by all-trans-RA. However, the extent of growth inhibition did vary somewhat from clone to clone. Additional studies employing flow cytometry showed that all-trans-RA blocked CA-OV3 cell cycle progression in the G1stage. Finally, all-trans-RA was able to inhibit G1progression in growth-arrested CA-OV3 cells following stimulation with fetal bovine serum, insulin, IGF-1, or estrogen. Since each of these growth factors is known to act via distinct signal transduction pathways, our results suggest that all-trans-RA blocks G1progression by targeting a downstream process or event which occurs at a point after the insulin/IGF-1, estrogen, and serum signal transduction pathways converge.  相似文献   

9.
NIN1 is an essential gene for growth of the yeastSaccharomyces cerevisiae and was recently found to encode a component of the regulatory subunit of the 26S proteasome. Thenin1-1 mutant is temperature sensitive and its main defect is in G1/S progression and G2/M progression at non-permissive temperatures. One of the two multicopy suppressors ofnin1-1, SUN2 (SUppressor of Nin1-1), was found to encode a protein of 523 amino acids whose sequence is similar to those ofDrosophila melanogaster diphenol oxidase A2 and the mouse mast-cell Tum transplantation antigen, P91A. The C-terminal half of Sun2p was found to be functional as Sun2p at 25° C, 30° C, and 34° C but not at 37° C. The open reading frame (ORF) of theDrosophila diphenol oxidase A2 gene (Dox-A2) was obtained from a lambda phage cDNA library using the polymerase chain reaction technique. TheDox-A2 ORF driven by theTDH3 promoter complemented the phenotype of a strain deleted forsun2. ThisDox-A2-dependent strain was temperature sensitive and accumulated dumb-bell-shaped cells, with an undivided nucleus at the isthmus, after temperature upshift. This morphology is similar to that ofnin1-1 cells kept at a restrictive temperature. These results suggest thatSUN2 is a functional counterpart ofDox-A2 and that these genes play a pivotal role in the cell cycle in each organism.  相似文献   

10.
Estrogen receptor alpha (ERα) has been implicated in several cell cycle regulatory events and is an important predictive marker of disease outcome in breast cancer patients. Here, we aimed to elucidate the mechanism through which ERα influences proliferation in breast cancer cells. Our results show that ERα protein is cell cycle-regulated in human breast cancer cells and that the presence of 17-β-estradiol (E2) in the culture medium shortened the cell cycle significantly (by 4.5 hours, P < 0.05) compared with unliganded conditions. The alterations in cell cycle duration were observed in the S and G2/M phases, whereas the G1 phase was indistinguishable under liganded and unliganded conditions. In addition, ERα knockdown in MCF-7 cells accelerated mitotic exit, whereas transfection of ERα-negative MDA-MB-231 cells with exogenous ERα significantly shortened the S and G2/M phases (by 9.1 hours, P < 0.05) compared with parental cells. Finally, treatment of MCF-7 cells with antiestrogens revealed that tamoxifen yields a slower cell cycle progression through the S and G2/M phases than fulvestrant does, presumably because of the destabilizing effect of fulvestrant on ERα protein. Together, these results show that ERα modulates breast cancer cell proliferation by regulating events during the S and G2/M phases of the cell cycle in a ligand-dependent fashion. These results provide the rationale for an effective treatment strategy that includes a cell cycle inhibitor in combination with a drug that lowers estrogen levels, such as an aromatase inhibitor, and an antiestrogen that does not result in the degradation of ERα, such as tamoxifen.  相似文献   

11.
Kaposi sarcoma-associated herpesvirus (KSHV) is a tumor virus encoding several proto-oncogenes. However, the roles of these viral genes in KSHV-induced tumorigenesis have not been defined. In this study, we used a recently developed model of KSHV-induced cellular transformation and tumorigenesis combining with a reverse genetic system to examine the role of a KSHV latent gene vCyclin (ORF72), a cellular Cyclin D2 homolog, in KSHV-induced oncogenesis. Deletion of vCyclin did not affect cell proliferation and cell cycle progression at a low-density condition, when cells were at an active proliferation state. However, vCyclin mutant cells were contact-inhibited and arrested at G1 phase at a high-density condition. As a result, vCyclin mutant cells formed less and smaller colonies in soft agar assay. Nude mice inoculated with vCyclin mutant cells had reduced tumor incidence and extended tumor latency and survival compared with mice inoculated with wild-type (WT) virus-infected cells. WT but not mutant virus effectively induced Cyclin-dependent kinase inhibitor p27/Kip1 Ser10 phosphorylation and cytoplasmic relocalization. shRNA knockdown of p27 released the blockage of the mutant cells from cell cycle arrest at G1 phase at a high-density condition. Together, these results indicate that vCyclin primarily functions to enhance cellular transformation and tumorigenesis by promoting cell cycle progression and cell proliferation at a contact-inhibited condition.  相似文献   

12.
Abstract. Objectives: Previously, we have found that the ClC‐3 chloride channel is involved in endothelin‐1 (ET‐1)‐induced rat aortic smooth muscle cell proliferation. The present study was to investigate the role of ClC‐3 in cell cycle progression/distribution and the underlying mechanisms of proliferation. Materials and methods: Small interference RNA (siRNA) is used to silence ClC‐3 expression. Cell proliferation, cell cycle distribution and protein expression were measured or detected with cell counting, bromodeoxyuridine (BrdU) incorporation, Western blot and flow cytometric assays respectively. Results: ET‐1‐induced rat basilar vascular smooth muscle cell (BASMC) proliferation was parallel to a significant increase in endogenous expression of ClC‐3 protein. Silence of ClC‐3 by siRNA inhibited expression of ClC‐3 protein, prevented an increase in BrdU incorporation and cell number induced by ET‐1. Silence of ClC‐3 also caused cell cycle arrest in G0/G1 phase and prevented the cells’ progression from G1 to S phase. Knockdown of ClC‐3 potently inhibited cyclin D1 and cyclin E expression and increased cyclin‐dependent kinase inhibitors (CDKIs) p27KIP and p21CIP expression. Furthermore, ClC‐3 knockdown significantly attenuated phosphorylation of Akt and glycogen synthase kinase‐3β (GSK‐3β) induced by ET‐1. Conclusion: Silence of ClC‐3 protein effectively suppressed phosphorylation of the Akt/GSK‐3β signal pathway, resulting in down‐regulation of cyclin D1 and cyclin E, and up‐regulation of p27KIP and p21CIP. In these BASMCs, integrated effects lead to cell cycle G1/S arrest and inhibition of cell proliferation.  相似文献   

13.
ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27Kip1 Murray AH, Hunt T. The cell cycle: an introduction. New York: Oxford University Press, 1993. [Google Scholar] protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27Kip1 Murray AH, Hunt T. The cell cycle: an introduction. New York: Oxford University Press, 1993. [Google Scholar] stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.  相似文献   

14.
15.
DNA damage checkpoints delay mitotic cell‐cycle progression in response to DNA stress, stalling the cell cycle to allow time for repair. CDKB is a plant‐specific cyclin‐dependent kinase (CDK) that is required for the G2/M transition of the cell cycle. In Arabidopsis, DNA damage leads the degradation of CDKB2, and the subsequent G2 arrest gives cells time to repair damaged DNA. G2 arrest also triggers transition from the mitotic cycle to endoreduplication, leading to the presence of polyploid cells in many tissues. In contrast, in rice (Oryza sativa), polyploid cells are found only in the endosperm. It was unclear whether endoreduplication contributes to alleviating DNA damage in rice (Oryza sativa). Here, we show that DNA damage neither down‐regulates Orysa;CDKB2;1 nor induces endoreduplication in rice. Furthermore, we found increased levels of Orysa;CDKB2;1 protein upon DNA damage. These results suggest that CDKB2 functions differently in Arabidopsis and rice in response to DNA damage. Arabidopsis may adopt endoreduplication as a survival strategy under genotoxic stress conditions, but rice may enhance DNA repair capacity upon genotoxic stress. In addition, polyploid cells due to endomitosis were present in CDKB2;1 knockdown rice, suggesting an important role for Orysa;CDKB2;1 during mitosis.  相似文献   

16.
Dinoflagellates of the genus Symbiodinium live in symbiosis with many invertebrates, including reef‐building corals. Hosts maintain this symbiosis through continuous regulation of Symbiodinium cell density via expulsion and degradation (postmitotic) and/or constraining cell growth and division through manipulation of the symbiont cell cycle (premitotic). Importance of premitotic regulation is unknown since little data exists on cell cycles for the immense genetic diversity of Symbiodinium. We therefore examined cell cycle progression for several distinct SymbiodiniumITS2‐types (B1, C1, D1a). All types exhibited typical microalgal cell cycle progression, G1 phase through to S phase during the light period, and S phase to G2/M phase during the dark period. However, the proportion of cells in these phases differed between strains and reflected differences in growth rates. Undivided larger cells with 3n DNA content were observed especially in type D1a, which exhibited a distinct cell cycle pattern. We further compared cell cycle patterns under different growth light intensities and thermal regimes. Whilst light intensity did not affect cell cycle patterns, heat stress inhibited cell cycle progression and arrested all strains in G1 phase. We discuss the importance of understanding Symbiodinium functional diversity and how our findings apply to clarify stability of host‐Symbiodinium symbioses.  相似文献   

17.

Background

α-Santalol, an active component of sandalwood oil, has shown chemopreventive effects on skin cancer in different murine models. However, effects of α-santalol on cell cycle have not been studied. Thus, the objective of this study was to investigate effects of α-santalol on cell cycle progression in both p53 mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells to elucidate the mechanism(s) of action.

Methods

MTT assay was used to determine cell viability in A431 cells and UACC-62; fluorescence-activated cell sorting (FACS) analysis of propidium iodide staining was used for determining cell cycle distribution in A431 cells and UACC-62 cells; immunoblotting was used for determining the expression of various proteins and protein complexes involved in the cell cycle progression; siRNA were used to knockdown of p21 or p53 in A431 and UACC-62 cells and immunofluorescence microscopy was used to investigate microtubules in UACC-62 cells.

Results

α-Santalol at 50-100 μM decreased cell viability from 24 h treatment and α-santalol at 50 μM-75 μM induced G2/M phase cell cycle arrest from 6 h treatment in both A431 and UACC-62 cells. α-Santalol altered expressions of cell cycle proteins such as cyclin A, cyclin B1, Cdc2, Cdc25c, p-Cdc25c and Cdk2. All of these proteins are critical for G2/M transition. α-Santalol treatment up-regulated the expression of p21 and suppressed expressions of mutated p53 in A431 cells; whereas, α-santalol treatment increased expressions of wild-type p53 in UACC-62 cells. Knockdown of p21 in A431 cells, knockdown of p21 and p53 in UACC-62 cells did not affect cell cycle arrest caused by α-santalol. Furthermore, α-santalol caused depolymerization of microtubules similar to vinblastine in UACC-62 cells.

Conclusions

This study for the first time identifies effects of α-santalol in G2/M phase arrest and describes detailed mechanisms of G2/M phase arrest by this agent, which might be contributing to its overall cancer preventive efficacy in various mouse skin cancer models.
  相似文献   

18.
During mouse embryonic development germ cells proliferate extensively until they commit to the male or female pathway and arrest in mitosis or meiosis respectively. Whilst the transition of female germ cells exiting the mitotic cell cycle and entering meiosis is well defined histologically, the essential cell cycle proteins involved in this process have remained unresolved. Using flow cytometry we have examined the entry of female germ cells into meiosis, their termination of DNA synthesis and entry into prophase I. Analysis of key G2/M cell cycle proteins revealed that entry into meiosis and cell cycle exit at G2/M involves repression of G2/M promoting Cyclin B1, coincident upregulation of G2/M repressing Cyclin B3 and robust establishment of the ATM/CHK2 pathway. By contrast we show that the ATR/CHK1 pathway is activated in male and female germ cells. This data indicates that an important G2/M surveillance mechanism operates during germ cell proliferation and that passage into meiotic G2/M involves the combined repression of G2/M through Cyclin B3 and activation of the key G2/M checkpoint regulatory network modulated through ATM and CHK2. This work shows that the core regulatory machinery that controls G2/M progression in mitotic cells is activated in female mouse germ cells as they enter meiosis.  相似文献   

19.
20.
Hepatocyte odd protein shuttling (HOPS) moves between nucleus and cytoplasm. HOPS overexpression leads to cell cycle arrest in G0/G1, and HOPS knockdown causes centrosome alterations, with subsequent abnormal cell division. Recently, we demonstrated that HOPS acts as a functional bridge in NPM-p19Arf interactions. Here we show that HOPS is present in 3 different isoforms that play distinct intracellular functions. Although HOPS is a transmembrane ubiquitin, an isoform with intermediate molecular weight is cleaved from the membrane and released into the cytosol, to act as the shuttling protein. We identified a signal peptide peptidase structure in N-terminal membrane-bound HOPS that allows the regulated intramembrane proteolysis (RIP) system to control the relative amounts of the released, shuttling isoform capable of binding NPM. These results argue for distinct, isoform-specific functions of HOPS in the nucleolus, nucleus, and cytoplasm and provide insight into the dynamics of HOPS association with NPM, whose mutation and subsequent delocalization is found in 30% of acute myeloid leukemia patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号