首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the possible role of DNA methylation in the modulation of expression of genes involved in the differentiation of muscle cells, we compared the methylation state of a number of CpG sites in the rat skeletal muscle actin and myosin light chain 2 genes, in muscle and nonmuscle cells, and in proliferating myoblasts and differentiated myotubes of the myogenic cell line L8. No correlation was detected between the state of methylation of these sites and the expression of the two genes. Essentially the same pattern of DNA methylation was observed, in the sites examined, in DNA from muscle, kidney and stomach. In DNA extracted from cultures of proliferating mononucleated myoblasts, as well as from differentiated multinucleated fibers of the myogenic cell line L8, the two genes were more methylated than in other tissues.  相似文献   

2.
3.
DNA甲基化失调引起基因表达异常是表观遗传学的一个显著特点。目前已知,由DNA甲基转移酶(DNA methyltransferases,DMNTs)催化DNA甲基化,其酶基因突变或表达异常引起DNA甲基化水平的改变。近期研究发现了一种DNA去甲基化酶--TET(Ten-Eleventranslocation)家族DNA羟化酶,能通过多种途径催化5-甲基胞嘧啶(5.methylcytosine,5-mC)去甲基化,从而调控DNA基化的平衡。5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5-hmC)作为DNA去甲基化多重步骤中重要的中间产物,其水平在肿瘤的发生和发展时期发生显著变化。该文从TET家族蛋白展开,介绍TET蛋白的结构、功能及作用机制以及多种人类肿瘤中丁E丁家族基因与5-hmC水平的相关性及其对肿瘤发生发展、诊断预后等临床意义的研究进展。  相似文献   

4.
Artificial induction of active DNA demethylation appears to be a possible and useful strategy in molecular biology research and therapy development. Dimethyl sulfoxide (DMSO) was shown to cause phenotypic changes in embryonic stem cells altering the genome-wide DNA methylation profiles. Here we report that DMSO increases global and gene-specific DNA hydroxymethylation levels in pre-osteoblastic MC3T3-E1 cells. After 1 day, DMSO increased the expression of genes involved in DNA hydroxymethylation (TET) and nucleotide excision repair (GADD45) and decreased the expression of genes related to DNA methylation (Dnmt1, Dnmt3b, Hells). Already 12 hours after seeding, before first replication, DMSO increased the expression of the pro-apoptotic gene Fas and of the early osteoblastic factor Dlx5, which proved to be Tet1 dependent. At this time an increase of 5-methyl-cytosine hydroxylation (5-hmC) with a concomitant loss of methyl-cytosines on Fas and Dlx5 promoters as well as an increase in global 5-hmC and loss in global DNA methylation was observed. Time course-staining of nuclei suggested euchromatic localization of DMSO induced 5-hmC. As consequence of induced Fas expression, caspase 3/7 and 8 activities were increased indicating apoptosis. After 5 days, the effect of DMSO on promoter- and global methylation as well as on gene expression of Fas and Dlx5 and on caspases activities was reduced or reversed indicating down-regulation of apoptosis. At this time, up regulation of genes important for matrix synthesis suggests that DMSO via hydroxymethylation of the Fas promoter initially stimulates apoptosis in a subpopulation of the heterogeneous MC3T3-E1 cell line, leaving a cell population of extra-cellular matrix producing osteoblasts.  相似文献   

5.
《Epigenetics》2013,8(6):842-850
Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage.  相似文献   

6.
7.
8.
For cytosine (C) demethylation of vertebrate DNA, it is known that the TET proteins could convert 5-methyl C (5-mC) to 5-hydroxymethyl C (5-hmC). However, DNA dehydroxymethylase(s), or enzymes able to directly convert 5-hmC to C, have been elusive. We present in vitro evidence that the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B, but not the maintenance enzyme DNMT1, are also redox-dependent DNA dehydroxymethylases. Significantly, intactness of the C methylation catalytic sites of these de novo enzymes is also required for their 5-hmC dehydroxymethylation activity. That DNMT3A and DNMT3B function bidirectionally both as DNA methyltransferases and as dehydroxymethylases raises intriguing and new questions regarding the structural and functional aspects of these enzymes and their regulatory roles in the dynamic modifications of the vertebrate genomes during development, carcinogenesis, and gene regulation.  相似文献   

9.
《Epigenetics》2013,8(2):201-207
TET2 enzymatically converts 5-methyl-cytosine to 5-hydroxymethyl-cytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocytic leukemia (CMML) samples. TET2 missense or nonsense mutations were detected in 53% (16/30) of patients. In contrast, only 1/30 patient had a mutation in IDH1 or IDH2, and none of them had a mutation in DNMT3A in the sites most frequently mutated in leukemia. Using bisulfite pyrosequencing, global methylation measured by the LINE-1 assay and DNA methylation levels of 10 promoter CpG islands frequently abnormal in myeloid leukemia were not different between TET2 mutants and wild-type CMML cases. This was also true for 9 out of 11 gene promoters reported by others as differentially methylated by TET2 mutations. We found that two non-CpG island promoters, AIM2 and SP140, were hypermethylated in patients with mutant TET2. These were the only two gene promoters (out of 14,475 genes) previously found to be hypermethylated in TET2 mutant cases. However, total 5-methyl-cytosine levels in TET2 mutant cases were significantly higher than TET2 wild-type cases (median = 14.0% and 9.8%, respectively) (p = 0.016). Thus, TET2 mutations affect global methylation in CMML but most of the changes are likely to be outside gene promoters.  相似文献   

10.
11.
The tropism of Zika virus (ZIKV) has been described in the nervous system, blood, placenta, thymus, and skeletal muscle. We investigated the mechanisms of skeletal muscle susceptibility to ZIKV using an in vitro model of human skeletal muscle myogenesis, in which myoblasts differentiate into myotubes. Myoblasts were permissive to ZIKV infection, generating productive viral particles, while myotubes controlled ZIKV replication. To investigate the underlying mechanisms, we used gene expression profiling. First, we assessed gene changes in myotubes compared with myoblasts in the model without infection. As expected, we observed an increase in genes and pathways related to the contractile muscle system in the myotubes, a reduction in processes linked to proliferation, migration and cytokine production, among others, confirming the myogenic capacity of our system in vitro. A comparison between non-infected and infected myoblasts revealed more than 500 differentially expressed genes (DEGs). In contrast, infected myotubes showed almost 2,000 DEGs, among which we detected genes and pathways highly or exclusively expressed in myotubes, including those related to antiviral and innate immune responses. Such gene modulation could explain our findings showing that ZIKV also invades myotubes but does not replicate in these differentiated cells. In conclusion, we showed that ZIKV largely (but differentially) disrupts gene expression in human myoblasts and myotubes. Identifying genes involved in myotube resistance can shed light on potential antiviral mechanisms against ZIKV infection.  相似文献   

12.
DNA羟甲基化修饰是基因组表观遗传学的重要调控方式,指5-甲基胞嘧啶(5-m C)在TET蛋白家族的催化作用下氧化生成5-羟甲基胞嘧啶(5-hm C),完成DNA胞嘧啶的去甲基化过程。基因组甲基化异常导致了多种肿瘤的发生,羟甲基化修饰作为去甲基化的一种,同样与肿瘤发生密不可分。在消化系统肿瘤发生发展过程中存在5-hm C含量的变化,其原因可能与TET蛋白家族、IDH突变等密切相关,提示DNA羟甲基化修饰参与了消化系统肿瘤的发生发展过程。本文围绕DNA羟甲基化修饰与消化系统肿瘤之间的关系进行综述,旨在为消化系统肿瘤羟甲基化修饰研究提供新方向。  相似文献   

13.
The family of Ten-Eleven Translocation (TET) proteins is implicated in the process of active DNA demethylation and thus in epigenetic regulation. TET 1, 2 and 3 proteins are oxygenases that can hydroxylate 5-methylcytosine (5-mC) into 5-hydroxymethylcytosine (5-hmC) and further oxidize 5-hmC into 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC). The base excision repair (BER) pathway removes the resulting 5-fC and 5-caC bases paired with a guanine and replaces them with regular cytosine. The question arises whether active modification of 5-mC residues and their subsequent elimination could affect the genomic DNA stability. Here, we generated two inducible cell lines (Ba/F3-EPOR, and UT7) overexpressing wild-type or catalytically inactive human TET2 proteins. Wild-type TET2 induction resulted in an increased level of 5-hmC and a cell cycle defect in S phase associated with higher level of phosphorylated P53, chromosomal and centrosomal abnormalities. Furthermore, in a thymine-DNA glycosylase (Tdg) deficient context, the TET2-mediated increase of 5-hmC induces mutagenesis characterized by GC > AT transitions in CpG context suggesting a mutagenic potential of 5-hmC metabolites. Altogether, these data suggest that TET2 activity and the levels of 5-hmC and its derivatives should be tightly controlled to avoid genetic and chromosomal instabilities. Moreover, TET2-mediated active demethylation might be a very dangerous process if used to entirely demethylate the genome and might rather be used only at specific loci.  相似文献   

14.
15.
Patterns of DNA methylation, an important epigenetic modification involved in gene silencing and development, are disrupted in cancer cells. Understanding the functional significance of aberrant methylation in tumors remains challenging, due in part to the lack of suitable tools to actively modify methylation patterns. DNA demethylation caused by mammalian DNA methyltransferase inhibitors is transient and replication-dependent, whereas that induced by TET enzymes involves oxidized 5mC derivatives that perform poorly understood regulatory functions. Unlike animals, plants possess enzymes that directly excise unoxidized 5mC from DNA, allowing restoration of unmethylated C through base excision repair. Here, we show that expression of Arabidopsis 5mC DNA glycosylase DEMETER (DME) in colon cancer cells demethylates and reactivates hypermethylated silenced loci. Interestingly, DME expression causes genome-wide changes that include both DNA methylation losses and gains, and partially restores the methylation pattern observed in normal tissue. Furthermore, such methylome reprogramming is accompanied by altered cell cycle responses and increased sensibility to anti-tumor drugs, decreased ability to form colonospheres, and tumor growth impairment in vivo. Our study shows that it is possible to reprogram a human cancer DNA methylome by expression of a plant DNA demethylase.  相似文献   

16.
Ten-eleven translocation (TET) enzymes catalyze the oxidation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine and 5-carboxylcytosine, which result in genomic DNA demethylation. It was reported that 5-hmC levels were decreased in a variety of cancers and could be regarded as an epigenetic hallmark of cancer. In the present study, 5-hmC levels were detected by immunohistochemistry (IHC) in 173 esophageal squamous cell carcinoma (ESCC) tissues and 91 corresponding adjacent non-tumor tissues; DNA dot blot assays were used to detect the 5-hmC level in another 50 pairs of ESCC tissues and adjacent non-tumor tissues. In addition, the mRNA level of TET1, TET2 and TET3 in these 50 pairs of ESCC tissues was detected by real-time PCR. The IHC and DNA dot blot results showed that 5-hmC levels were significantly lower in ESCC tissues compared with corresponding adjacent non-tumor tissues (P = 0.029). TET2 and TET3 expression was also significantly decreased in tumor tissues compared with paired non-tumor tissues (TET2, P < 0.0001; TET3, P = 0.009), and the decrease in 5-hmC was significantly associated with the downregulation of TET2 expression (r = 0.405, P = 0.004). Moreover, the loss of 5-hmC in ESCC tissues was significantly associated with poor overall survival among patients with ESCC (P = 0.043); multivariate Cox regression analysis showed that the loss of 5-hmC in ESCC tissues was an independent unfavorable prognostic indicator for patients with ESCC (HR = 1.569, P = 0.029). In conclusion, 5-hmC levels were decreased in ESCC tissues, and the loss of 5-hmC in tumor tissues was an independent unfavorable prognostic factor for patients with ESCC.  相似文献   

17.
DNA methylation has been studied in many eukaryotic organisms, in particular vertebrates, and was implicated in developmental and phenotypic variations. Little is known about the role of DNA methylation in invertebrates, although insects are considered as excellent models for studying the evolution of DNA methylation. In the red flour beetle, Tribolium castaneum (Tenebrionidae, Coleoptera), no evidence of DNA methylation has been found till now. In this paper, a cytosine methylation in Tribolium castaneum embryos was detected by methylation sensitive restriction endonucleases and immuno-dot blot assay. DNA methylation in embryos is followed by a global demethylation in larvae, pupae and adults. DNA demethylation seems to proceed actively through 5-hydroxymethylcytosine, most probably by the action of TET enzyme. Bisulfite sequencing of a highly abundant satellite DNA located in pericentromeric heterochromatin revealed similar profile of cytosine methylation in adults and embryos. Cytosine methylation was not only restricted to CpG sites but was found at CpA, CpT and CpC sites. In addition, complete cytosine demethylation of heterochromatic satellite DNA was induced by heat stress. The results reveal existence of DNA methylation cycling in T. castaneum ranging from strong overall cytosine methylation in embryos to a weak DNA methylation in other developmental stages. Nevertheless, DNA methylation is preserved within heterochromatin during development, indicating its role in heterochromatin formation and maintenance. It is, however, strongly affected by heat stress, suggesting a role for DNA methylation in heterochromatin structure modulation during heat stress response.  相似文献   

18.
Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage.  相似文献   

19.
Summary Our previous studies have demonstrated that expression of growth-associated genes is regulated by the adhesive state of the cell. To understand the role of cell adhesion in regulating the switch from growth to differentiation, we are studying the differentiation of mouse myoblasts into multinucleated contractile myotubes. In this report, we describe a novel means of culturing C2C12 myoblasts that permits an analysis of the role of cell adhesion in regulating the sequential induction of muscle-specific genes that control myogenesis. Suspension of an asynchronous, proliferating population of myoblasts in a viscous gel of methylcellulose dissolved in medium containing 20% serum induces growth arrest in G0 phase of the cell cycle without a concomitant induction of muscle-specific genes. Reattachment to a solid substratum in 20% serum, 0.5nM bFGF, or 10 nM IGF-1 rapidly activates entry of the quiescent cells into G1 followed by a synchronous progression of the cell population through into S phase. bFGF or IGF-1 added separately facilitate only one passage through the cell cycle, whereas 20% serum or the two growth factors added together support multiple cell divisions. Adhesion of suspended cells in DMEM alone or with 3 nM IGF-1 induces myogenesis as evidenced by the synthesis of myogenin and myosin heavy chain (MHC) proteins followed by fusion into myotubes. bFGF completely inhibits this differentiation process even in the presence of myogenic doses of IGF-1. Addition of 3 nM IGF-1 to quiescent myoblasts maintained in suspension culture in serum-free conditions does not induce myogenin or MHC expression. Thus, adhesion is a requirement for the induction of muscle gene expression in mouse myoblasts. The development of a muscle cell culture environment in which proliferating myoblasts can be growth arrested in G0 without activating muscle-specific gene expression provides a means of analyzing the synchronous activation of either the myogenic or growth programs and how adhesion affects each process, respectively. Supported by training grant T32-HL07035  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号