首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endothelium forms a selective semi-permeable barrier controlling bidirectional transfer between blood vessel and irrigated tissues. This crucial function relies on the dynamic architecture of endothelial cell–cell junctions, and in particular, VE-cadherin-mediated contacts. VE-cadherin indeed chiefly organizes the opening and closing of the endothelial barrier, and is central in permeability changes. In this review, the way VE-cadherin-based contacts are formed and maintained is first presented, including molecular traits of its expression, partners, and signaling. In a second part, the mechanisms by which VE-cadherin adhesion can be disrupted, leading to cell–cell junction weakening and endothelial permeability increase, are described. Overall, the molecular basis for VE-cadherin control of the endothelial barrier function is of high interest for biomedical research, as vascular leakage is observed in many pathological conditions and human diseases.  相似文献   

2.
The endothelium forms a selective semi-permeable barrier controlling bidirectional transfer between blood vessel and irrigated tissues. This crucial function relies on the dynamic architecture of endothelial cell–cell junctions, and in particular, VE-cadherin-mediated contacts. VE-cadherin indeed chiefly organizes the opening and closing of the endothelial barrier, and is central in permeability changes. In this review, the way VE-cadherin-based contacts are formed and maintained is first presented, including molecular traits of its expression, partners, and signaling. In a second part, the mechanisms by which VE-cadherin adhesion can be disrupted, leading to cell–cell junction weakening and endothelial permeability increase, are described. Overall, the molecular basis for VE-cadherin control of the endothelial barrier function is of high interest for biomedical research, as vascular leakage is observed in many pathological conditions and human diseases.  相似文献   

3.
The endothelium forms a selective semi-permeable barrier controlling bidirectional transfer between blood vessel and irrigated tissues. This crucial function relies on the dynamic architecture of endothelial cell–cell junctions, and in particular, VE-cadherin-mediated contacts. VE-cadherin indeed chiefly organizes the opening and closing of the endothelial barrier, and is central in permeability changes. In this review, the way VE-cadherin-based contacts are formed and maintained is first presented, including molecular traits of its expression, partners, and signaling. In a second part, the mechanisms by which VE-cadherin adhesion can be disrupted, leading to cell–cell junction weakening and endothelial permeability increase, are described. Overall, the molecular basis for VE-cadherin control of the endothelial barrier function is of high interest for biomedical research, as vascular leakage is observed in many pathological conditions and human diseases.  相似文献   

4.
To establish the role of vascular endothelial (VE)-cadherin in the regulation of endothelial cell functions, we investigated the effect of phosphorylation of a VE-cadherin site sought to be involved in p120-catenin binding on vascular permeability and endothelial cell migration. To this end, we introduced either wild-type VE-cadherin or Y658 phosphomimetic (Y658E) or dephosphomimetic (Y658F) VE-cadherin mutant constructs into an endothelial cell line (rat fat pad endothelial cells) lacking endogenous VE-cadherin. Remarkably, neither wild-type- nor Y658E VE-cadherin was retained at cell-cell contacts because of p120-catenin preferential binding to N-cadherin, resulting in the targeting of N-cadherin to cell-cell junctions and the exclusion of VE-cadherin. However, Y658F VE-cadherin was able to bind p120-catenin and to localize at adherence junctions displacing N-cadherin. This resulted in an enhanced barrier function and a complete abrogation of Rac1 activation and lamellipodia formation, thereby inhibiting cell migration. These findings demonstrate that VE-cadherin, through the regulation of Y658 phosphorylation, competes for junctional localization with N-cadherin and controls vascular permeability and endothelial cell migration.  相似文献   

5.
The endothelial barrier controls the passage of fluids, nutrients and cells through the vascular wall. This physiological function is closely related to developmental and adult angiogenesis, blood pressure control, as well as immune responses. Moreover, cancer progression is frequently characterized by disorganized and leaky blood vessels. In this context, vascular permeability drives tumour-induced angiogenesis, blood flow disturbances, inflammatory cell infiltration and tumour cell extravasation. Although various molecules have been implicated, the vascular endothelial adhesion molecule, VE-cadherin (vascular endothelial cadherin), has emerged as a critical player involved in maintaining endothelial barrier integrity and homoeostasis. Indeed, VE-cadherin coordinates the endothelial cell-cell junctions through its adhesive and signalling properties. Of note, many angiogenic and inflammatory mediators released into the tumour microenvironment influence VE-cadherin behaviour. Therefore restoring VE-cadherin function could be one very promising target for vascular normalization in cancer therapies. In this review, we will mainly focus on recent discoveries concerning the molecular mechanisms involved in modulating VE-cadherin plasticity in cancer.  相似文献   

6.
VE-cadherin is the predominant adhesion molecule in vascular endothelial cells being responsible for maintenance of the endothelial barrier function by forming adhesive contacts (adherens junctions) to neighbouring cells. We found by use of single molecule fluorescence microscopy that VE-cadherin is localised in preformed clusters when not inside adherens junctions. These clusters depend on the integrity of the actin cytoskeleton and are localised in cholesterol rich microdomains of mature endothelial cells as found by membrane fractionation. The ability to form and maintain VE-cadherin based junctions was probed using the laser tweezer technique, and we found that cholesterol depletion has dramatical effects on VE-cadherin mediated adhesion. While a 30% reduction of the cholesterol-level results in an increase of adhesion, excessive cholesterol depletion by about 60% leads to an almost complete loss of VE-cadherin function. Nevertheless, the cadherin concentration in the membrane and the single molecule kinetic parameters of the cadherin are not changed. Our results suggest that the actin cytoskeleton, junction-associated proteins and protein–lipid assemblies in cholesterol-rich microdomains mutually stabilise each other to form functional adhesion contacts.  相似文献   

7.
Beta-catenin plays an important role in the regulation of vascular endothelial cell-cell adhesions and barrier function by linking the VE-cadherin junction complex to the cytoskeleton. The purpose of this study was to evaluate the effect of beta-catenin and VE-cadherin interactions on endothelial permeability during inflammatory stimulation by histamine. We first assessed the ability of a beta-catenin binding polypeptide known as inhibitor of beta-catenin and T cell factor (ICAT) to compete beta-catenin binding to VE-cadherin in vitro. We then overexpressed recombinant FLAG-ICAT in human umbilical vein endothelial cells (HUVECs) to study its impact on endothelial barrier function controlled by cell-cell adhesions. The binding of beta-catenin to VE-cadherin was quantified before and after stimulation with histamine along with measurements of transendothelial electrical resistance (TER) and apparent permeability to albumin (P(a)) under the same conditions. The results showed that ICAT bound to beta-catenin and competitively inhibited binding of the VE-cadherin cytoplasmic domain to beta-catenin in a concentration-dependent manner. Overexpression of FLAG-ICAT in endothelial cell monolayers did not affect their basal permeability properties, as indicated by unaltered TER and P(a); however, the magnitude and duration of histamine-induced decreases in TER were significantly augmented. Likewise, the increase in P(a) in the presence of histamine was exacerbated. Overexpression of FLAG-ICAT also significantly decreased the level of beta-catenin-associated VE-cadherin following histamine stimulation. Taken together, these data suggest that inflammatory agents like histamine cause a transient and reversible disruption of binding between beta-catenin and VE-cadherin, during which endothelial permeability is elevated.  相似文献   

8.
Interaction of p120 with juxtamembrane domain (JMD) of VE-cadherin has been implicated in regulation of endothelial cell-cell adhesion. We used a number of approaches to alter the level of p120 available for binding to VE-cadherin as a means to investigate the role of p120-VE-cadherin interaction in regulation of barrier function in confluent endothelial monolayers. Expression of an epitope-tagged fragment corresponding to JMD of VE-cadherin resulted in a decrease in endothelial barrier function as assessed by changes in albumin clearance and electrical resistance. Binding of JMD-Flag to p120 resulted in a decreased level of p120. In addition to decreasing p120 level, expression of JMD also decreased level of VE-cadherin. Expression of JMD also caused an increase in MLC phosphorylation and rearrangement of actin cytoskeleton, which, coupled with decreased cadherin, can contribute to loss of barrier function. Reducing p120 by siRNA resulted in a decrease in VE-cadherin, whereas increasing the level of p120 increased the level of VE-cadherin, demonstrating that p120 regulates the level of VE-cadherin. Overexpression of p120 was, however, associated with decreased barrier function and rearrangement of the actin cytoskeleton. Interestingly, expression of p120 was able to inhibit thrombin-induced increases in MLC phosphorylation, suggesting that p120 inhibits activation of Rho/Rho kinase pathway in endothelial cells. Excess p120 also prevented JMD-induced increases in MLC phosphorylation, correlating this phosphorylation with Rho/Rho kinase pathway. These findings show p120 plays a major role in regulating endothelial barrier function, as either a decrease or increase of p120 resulted in disruption of permeability across cell monolayers.  相似文献   

9.
Activation of Src family kinases (SFK) and the subsequent phosphorylation of VE-cadherin have been proposed as major regulatory steps leading to increases in vascular permeability in response to inflammatory mediators and growth factors. To investigate Src signaling in the absence of parallel signaling pathways initiated by growth factors or inflammatory mediators, we activated Src and SFKs by expression of dominant negative Csk, expression of constitutively active Src, or knockdown of Csk. Activation of SFK by overexpression of dominant negative Csk induced VE-cadherin phosphorylation at tyrosines 658, 685, and 731. However, dominant negative Csk expression was unable to induce changes in the monolayer permeability. In contrast, expression of constitutively active Src decreased barrier function and promoted VE-cadherin phosphorylation on tyrosines 658 and 731, although the increase in VE-cadherin phosphorylation preceded the increase in permeability by 4–6 h. Csk knockdown induced VE-cadherin phosphorylation at sites 658 and 731 but did not induce a loss in barrier function. Co-immunoprecipitation and immunofluorescence studies suggest that phosphorylation of those sites did not impair VE-cadherin ability to bind p120 and β-catenin or the ability of these proteins to localize at the plasma membrane. Taken together, our data show that Src-induced tyrosine phosphorylation of VE-cadherin is not sufficient to promote an increase in endothelial cell monolayer permeability and suggest that signaling leading to changes in vascular permeability in response to inflammatory mediators or growth factors may require VE-cadherin tyrosine phosphorylation concurrently with other signaling pathways to promote loss of barrier function.  相似文献   

10.
How vascular endothelial growth factor (VEGF) induces vascular permeability, its first described function, remains poorly understood. Here, we provide evidence of a novel signalling pathway by which VEGF stimulation promotes the rapid endocytosis of a key endothelial cell adhesion molecule, VE-cadherin, thereby disrupting the endothelial barrier function. This process is initiated by the activation of the small GTPase Rac by VEGFR-2 through the Src-dependent phosphorylation of Vav2, a guanine nucleotide-exchange factor. Rac activation, in turn, promotes the p21-activated kinase (PAK)-mediated phosphorylation of a highly conserved motif within the intracellular tail of VE-cadherin. Surprisingly, this results in the recruitment of beta-arrestin2 to serine-phosphorylated VE-cadherin, thereby promoting its internalization into clathrin-coated vesicles and the consequent disassembly of intercellular junctions. Ultimately, this novel biochemical route by which VEGF promotes endothelial permeability through the beta-arrestin2-dependent endocytosis of VE-cadherin may help identify new therapeutic targets for the treatment of many human diseases that are characterized by vascular leakage.  相似文献   

11.
DeFouw LM  DeFouw DO 《Tissue & cell》2000,32(3):238-242
Endothelial cells express two principal cadherins: VE-cadherin and N-cadherin. We established previously that only VE-cadherin expression was increased during differentiation of barrier function by angiogenic endothelium of the chick chorioallantoic membrane (CAM). Presently anti-VE-cadherin mAb, applied to the CAM at day 4.5 of gestation, served to inhibit the abrupt reduction of macromolecular extravasation that occurs normally at day 5.0. Neither anti-N-cadherin nor nonimmune IgG, on the other hand, prevented this temporal decrease of endothelial permeability. Despite the differential permeability responses, morphometric evaluations defined a reduction of mean paracellular cleft width after the application of either anti-VE-cadherin or anti-N-cadherin. Hence, alteration of molecular sieving characteristics within the junctional clefts, rather than modification of cleft dimensions; likely served as the principal modulator of macromolecular extravasation after inhibition of homotypic VE-cadherin adhesion. These results provide support to the concept that VE-cadherin contributes to the normal differentiation of endothelial barrier function during CAM angiogenesis in vivo.  相似文献   

12.
T-cadherin is a unique member of the cadherin superfamily of adhesion molecules. In contrast to “classical” cadherins, T-cadherin lacks transmembrane and cytoplasmic domains and is anchored to the cell membrane via a glycosilphosphoinositol moiety. T-cadherin is predominantly expressed in cardiovascular system. Clinical and biochemical studies evidence that expression of T-cadherin increases in post-angioplasty restenosis and atherosclerotic lesions—conditions associated with endothelial dysfunction and pathological expression of adhesion molecules. Here, we provide data suggesting a new signaling mechanism by which T-cadherin regulates endothelial permeability. T-cadherin overexpression leads to VE-cadherin phosphorylation on Y731 (β-catenin-binding site), VE-cadherin clathrin-dependent endocytosis and its degradation in lysosomes. Moreover, T-cadherin overexpression results in activation of Rho GTPases signaling and actin stress fiber formation. Thus, T-cadherin up-regulation is involved in degradation of a key endothelial adhesion molecule, VE-cadherin, resulting in the disruption of endothelial barrier function. Our results point to the role of T-cadherin in regulation of endothelial permeability and its possible engagement in endothelial dysfunction.  相似文献   

13.
VE-cadherin is the essential adhesion molecule in endothelial adherens junctions, and the regulation of protein tyrosine phosphorylation is thought to be important for the control of adherens junction integrity. We show here that VE-PTP (vascular endothelial protein tyrosine phosphatase), an endothelial receptor-type phosphatase, co-precipitates with VE-cadherin, but not with beta-catenin, from cell lysates of transfected COS-7 cells and of endothelial cells. Co-precipitation of VE-cadherin and VE-PTP required the most membrane-proximal extracellular domains of each protein. Expression of VE-PTP in triple-transfected COS-7 cells and in CHO cells reversed the tyrosine phosphorylation of VE-cadherin elicited by vascular endothelial growth factor receptor 2 (VEGFR-2). Expression of VE-PTP under an inducible promotor in CHO cells transfected with VE-cadherin and VEGFR-2 increased the VE-cadherin-mediated barrier integrity of a cellular monolayer. Surprisingly, a catalytically inactive mutant form of VE-PTP had the same effect on VE-cadherin phosphorylation and cell layer permeability. Thus, VE-PTP is a transmembrane binding partner of VE-cadherin that associates through an extracellular domain and reduces the tyrosine phosphorylation of VE-cadherin and cell layer permeability independently of its enzymatic activity.  相似文献   

14.
VE-cadherin and claudin-5 are major components of adherens and tight junctions of vascular endothelial cells and a decrease in their expression and an increase in the tyrosine-phosphorylation of VE-cadherin are associated with an increase in endothelial paracellular permeability. To clarify the mechanism underlying the development of edema in nasal polyps, we studied these molecules in polyp microvessels. Normal inferior turbinate mucosal tissues and nasal polyps from patients treated with or without glucocorticoid were stained for VE-cadherin or claudin-5 and CD31 by a double-immunofluorescence method and the immunofluorescence intensities were graded 1–3 with increasing intensity. To correct for differences in fluorescence intensity attributable to a different endothelial area being exposed in a section or to the thickness of a section, the relative immunofluorescence intensity was estimated by dividing the grade of VE-cadherin or claudin-5 by that of CD31 in each microvessel. Tyrosine-phosphorylation of VE-cadherin was examined by Western blot analysis. The relative intensities of VE-cadherin and claudin-5 in the CD31-positive microvessels significantly decreased in the following order; inferior turbinate mucosa, treated polyps and untreated polyps. The ratio of tyrosine-phosphorylated VE-cadherin to VE-cadherin was significantly higher in untreated polyps than in the inferior turbinate mucosa and treated polyps, between which no significant difference in the ratio was seen. Thus, in nasal polyps, the barrier function of endothelial adherens and tight junctions is weakened, although glucocorticoid treatment improves this weakened barrier function.  相似文献   

15.
Vascular endothelial growth factor (VEGF) and Angiopoietin 1 (Ang1) are both potent proangiogenic factors, but, whereas VEGF causes vascular permeability, Ang1 stabilizes blood vessels and protects them from VEGF-induced plasma leakage. The antivascular permeability mechanisms deployed by Ang1 are still undefined. Here, we demonstrate that Ang1 halts the ability of VEGF to induce the phosphorylation-dependent redistribution of the adhesion molecule VE-cadherin, thereby rescuing the endothelial barrier function. Ang1 inhibits the activation of Src by VEGF, the most upstream component of the pathway linking VEGF receptors to VE-cadherin internalization. Indeed, Ang1 promotes the activation of mDia through RhoA, resulting in the association of mDia with Src. This ultimately deprives VEGF receptors of an essential molecule required for promoting the disruption of endothelial cell-cell contacts and paracellular permeability.  相似文献   

16.
Impaired endothelial barrier function results in a persistent increase in endothelial permeability and vascular leakage. Repair of a dysfunctional endothelial barrier requires controlled restoration of adherens junctions, comprising vascular endothelial (VE)-cadherin and associated β-, γ-, α-, and p120-catenins. Little is known about the mechanisms by which recovery of VE-cadherin–mediated cell–cell junctions is regulated. Using the inflammatory mediator thrombin, we demonstrate an important role for the Src homology 2-domain containing tyrosine phosphatase (SHP2) in mediating recovery of the VE-cadherin–controlled endothelial barrier. Using SHP2 substrate-trapping mutants and an in vitro phosphatase activity assay, we validate β-catenin as a bona fide SHP2 substrate. SHP2 silencing and SHP2 inhibition both result in delayed recovery of endothelial barrier function after thrombin stimulation. Moreover, on thrombin challenge, we find prolonged elevation in tyrosine phosphorylation levels of VE-cadherin–associated β-catenin in SHP2-depleted cells. No disassembly of the VE-cadherin complex is observed throughout the thrombin response. Using fluorescence recovery after photobleaching, we show that loss of SHP2 reduces the mobility of VE-cadherin at recovered cell–cell junctions. In conclusion, our data show that the SHP2 phosphatase plays an important role in the recovery of disrupted endothelial cell–cell junctions by dephosphorylating VE-cadherin–associated β-catenin and promoting the mobility of VE-cadherin at the plasma membrane.  相似文献   

17.
We report here a direct modulation by mast cell tryptase of endothelial barrier function through activation of proteinase-activated receptor-2 (PAR-2). In cultured bovine aortic endothelial cells (BAECs), tryptase, trypsin and PAR-2 activating peptide impaired the barrier function as determined by the permeability of protein-conjugated Evans blue. The tryptase-induced barrier dysfunction was completely blocked by U73122, and partially reversed by xestospongin C, calphostin C or Y27632. The intracellular Ca(2+) was elevated by tryptase. It was notable that ioxaglate, a contrast material that degranulates mast cells, markedly increased the permeability when applied to BAECs in combination with mast cells, an action that was blocked by nafamostat, a potent tryptase inhibitor. Immunofluorescence analysis showed that actin stress fibre formation and disruption of VE-cadherin were observed after exposure to tryptase or ioxaglate in combination with mast cells. Therefore, it is suggested that mast cell tryptase impairs endothelial barrier function through activation of endothelial PAR-2 in a manner dependent on the phospholipase C activity.  相似文献   

18.
Breakdown of the inner blood-retinal barrier and the blood-brain barrier is associated with changes in tight and adherens junction-associated proteins that link vascular endothelial cells. This study aimed to test the hypothesis that transforming growth factor (TGF)-β1 increases the paracellular permeability of vascular endothelial monolayers through tyrosine phosphorylation of VE-cadherin and claudin-5. Bovine retinal and human brain capillary endothelial cells were grown as monolayers on coated polycarbonate membranes. Paracellular permeability was studied by measuring the equilibration of (14)C-inulin or fluorescence-labelled dextran. Changes in VE-cadherin and claudin-5 expression were studied by immunocytochemistry (ICC) and quantified by cell-based enzyme linked immunosorbent assays (ELISA). Tyrosine phosphorylation of VE-cadherin and claudin-5 was studied by ICC, immunoprecipitation and Western blotting. We found that exposure of endothelial cells to TGF-β1 caused a dose-dependent increase in paracellular permeability as reflected by increases in the equilibration of (14)C-inulin. This effect was enhanced by the tyrosine phosphatase inhibitor orthovanadate and attenuated by the tyrosine kinase inhibitor lavendustin A. ICC and cell-based ELISA revealed that TGF-β1 induced both dose- and time-dependent decreases in VE-cadherin and claudin-5 expression. Assessment of cell viability indicated that changes in these junction-associated proteins were not due to endothelial death or injury. ICC revealed that tyrosine phosphorylation of endothelial monolayers was greatly enhanced by TGF-β1 treatment, and immunoprecipitation of cell lysates showed increased tyrosine phosphorylation of VE-cadherin and claudin-5. Our results suggest that tyrosine phosphorylation of VE-cadherin and claudin-5 is involved in the increased paracellular permeability of central nervous system-derived vascular endothelium induced by TGF-β1.  相似文献   

19.
Vascular endothelial (VE)-cadherin is a cell–cell adhesion molecule involved in endothelial barrier functions. Previously, we reported that cAMP-Epac-Rap1 signal enhances VE-cadherin–dependent cell adhesion. Here, we further scrutinized how cAMP-Epac-Rap1 pathway promotes stabilization of VE-cadherin at the cell–cell contacts. Forskolin induced circumferential actin bundling and accumulation of VE-cadherin fused with green fluorescence protein (VEC-GFP) on the bundled actin filaments. Fluorescence recovery after photobleaching (FRAP) analyses using VEC-GFP revealed that forskolin stabilizes VE-cadherin at cell–cell contacts. These effects of forskolin were mimicked by an activator for Epac but not by that for protein kinase A. Forskolin-induced both accumulation and stabilization of junctional VEC-GFP was impeded by latrunculin A. VE-cadherin, α-catenin, and β-catenin were dispensable for forskolin-induced circumferential actin bundling, indicating that homophilic VE-cadherin association is not the trigger of actin bundling. Requirement of α- and β-catenins for forskolin-induced stabilization of VE-cadherin on the actin bundles was confirmed by FRAP analyses using VEC-GFP mutants, supporting the classical model that α-catenin could potentially link the bundled actin to cadherin. Collectively, circumferential actin bundle formation and subsequent linkage between actin bundles and VE-cadherin through α- and β-catenins are important for the stabilization of VE-cadherin at the cell–cell contacts in cAMP-Epac-Rap1 signal-activated cells.  相似文献   

20.
Blood vessels are covered with endothelial cells on their inner surfaces, forming a selective and semipermeable barrier between the blood and the underlying tissue. Many pathological processes, such as inflammation or cancer metastasis, are accompanied by an increased vascular permeability. Progress in live cell imaging techniques has recently revealed that the structure of endothelial cell contacts is constantly reorganized and that endothelial junctions display high heterogeneities at a subcellular level even within one cell. Although it is assumed that this dynamic remodeling is associated with a local change in endothelial barrier function, a direct proof is missing mainly because of a lack of appropriate experimental techniques. Here, we describe a new assay to dynamically measure local endothelial barrier function with a lateral resolution of ~15 μm and a temporal resolution of 1 min. In this setup, fluorescence-labeled molecules are added to the apical compartment of an endothelial monolayer, and the penetration of molecules from the apical to the basal compartment is recorded by total internal reflection fluorescence microscopy utilizing the generated evanescent field. With this technique, we found a remarkable heterogeneity in the local permeability for albumin within confluent endothelial cell layers. In regions with low permeability, stimulation with the proinflammatory agent histamine results in a transient increase in paracellular permeability. The effect showed a high variability along the contact of one individual cell, indicating a local regulation of endothelial barrier function. In regions with high basal permeability, histamine had no obvious effect. In contrast, the barrier-enhancing drug forskolin reduces the permeability for albumin and dextran uniformly along the cell junctions. Because this new approach can be readily combined with other live cell imaging techniques, it will contribute to a better understanding of the mechanisms underlying subcellular junctional reorganization during wound healing, inflammation, and angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号