首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proper trafficking of membrane-bound ion channels and transporters is requisite for normal cardiac function. Endosome-based protein trafficking of membrane-bound ion channels and transporters in the heart is poorly understood, particularly in vivo. In fact, for select cardiac cell types such as atrial myocytes, virtually nothing is known regarding endosomal transport. We previously linked the C-terminal Eps15 homology domain-containing protein 3 (EHD3) with endosome-based protein trafficking in ventricular cardiomyocytes. Here we sought to define the roles and membrane protein targets for EHD3 in atria. We identify the voltage-gated T-type Ca2+ channels (CaV3.1, CaV3.2) as substrates for EHD3-dependent trafficking in atria. Mice selectively lacking EHD3 in heart display reduced expression and targeting of both Cav3.1 and CaV3.2 in the atria. Furthermore, functional experiments identify a significant loss of T-type-mediated Ca2+ current in EHD3-deficient atrial myocytes. Moreover, EHD3 associates with both CaV3.1 and CaV3.2 in co-immunoprecipitation experiments. T-type Ca2+ channel function is critical for proper electrical conduction through the atria. Consistent with these roles, EHD3-deficient mice demonstrate heart rate variability, sinus pause, and atrioventricular conduction block. In summary, our findings identify CaV3.1 and CaV3.2 as substrates for EHD3-dependent protein trafficking in heart, provide in vivo data on endosome-based trafficking pathways in atria, and implicate EHD3 as a key player in the regulation of atrial myocyte excitability and cardiac conduction.  相似文献   

2.
Low voltage-activated (LVA) T-type Ca2+ channels activate in response to subthreshold membrane depolarizations and therefore represent an important source of Ca2+ influx near the resting membrane potential. In neurons, these proteins significantly contribute to control relevant physiological processes including neuronal excitability, pacemaking and post-inhibitory rebound burst firing. Three subtypes of T-type channels (Cav3.1 to Cav3.3) have been identified, and using functional expression of recombinant channels diverse studies have validated the notion that T-type Ca2+ channels can be modulated by various endogenous ligands as well as by second messenger pathways. In this context, the present study reveals a previously unrecognized role for cyclin-dependent kinase 5 (Cdk5) in the regulation of native T-type channels in N1E-115 neuroblastoma cells, as well as recombinant Cav3.1channels heterologously expressed in HEK-293 cells. Cdk5 and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth. Our results show that overexpression of Cdk5 causes a significant increase in whole cell patch clamp currents through T-type channels in N1E-115 cells, while siRNA knockdown of Cdk5 greatly reduced these currents. Consistent with this, overexpression of Cdk5 in HEK-293 cells stably expressing Cav3.1channels upregulates macroscopic currents. Furthermore, using site-directed mutagenesis we identified a major phosphorylation site at serine 2234 within the C-terminal region of the Cav3.1subunit. These results highlight a novel role for Cdk5 in the regulation of T-type Ca2+ channels.  相似文献   

3.
T-type calcium channel expression and function in the diseased heart   总被引:1,自引:0,他引:1  
The regulation of intracellular Ca (2+) is essential for cardiomyocyte function, and alterations in proteins that regulate Ca (2+) influx have dire consequences in the diseased heart. Low voltage-activated, T-type Ca (2+) channels are one pathway of Ca (2+) entry that is regulated according to developmental stage and in pathological conditions in the adult heart. Cardiac T-type channels consist of two main types, Cav3.1 (α1G) and Cav3.2 (α1H), and both can be induced in the myocardium in disease and injury but still, relatively little is known about mechanisms for their regulation and their respective functions. This article integrates previous data establishing regulation of T-type Ca (2+) channels in animal models of cardiac disease, with recent data that begin to address the functional consequences of cardiac Cav3.1 and Cav3.2 Ca (2+) channel expression in the pathological setting. The putative association of T-type Ca (2+) channels with Ca (2+) dependent signaling pathways in the context of cardiac hypertrophy is also discussed.  相似文献   

4.
Voltage-gated Ca2+ channels (VGCCs) are recognized for their superb ability for the preferred passage of Ca2+ over any other more abundant cation present in the physiological saline. Most of our knowledge about the mechanisms of selective Ca2+ permeation through VGCCs was derived from the studies on native and recombinant L-type representatives. However, the specifics of the selectivity and permeation of known recombinant T-type Ca2+-channel α1 subunits, Cav3.1, Cav3.2 and Cav3.3, are still poorly defined. In the present study we provide comparative analysis of the selectivity and permeation Cav3.1, Cav3.2, and Cav3.3 functionally expressed in Xenopus oocytes. Our data show that all Cav3 channels select Ca2+ over Na+ by affinity. Cav3.1 and Cav3.2 discriminate Ca2+, Sr2+ and Ba2+ based on the ion's effects on the open channel probability, whilst Cav3.3 discriminates based on the ion's intrapore binding affinity. All Cav3s were characterized by much smaller difference in the KD values for Na+ current blockade by Ca2+ (KD1 ∼ 6 μM) and for Ca2+ current saturation (KD2 ∼ 2 mM) as compared to L-type channels. This enabled them to carry notable mixed Na+/Ca2+ current at close to physiological Ca2+ concentrations, which was the strongest for Cav3.3, smaller for Cav3.2 and the smallest for Cav3.1. In addition to intrapore Ca2+ binding site(s) Cav3.2, but not Cav3.1 and Cav3.3, is likely to possess an extracellular Ca2+ binding site that controls channel permeation. Our results provide novel functional tests for identifying subunits responsible for T-type Ca2+ current in native cells.  相似文献   

5.
AimsBenidipine, a dihydropyridine Ca2+ channel blocker, has been reported to block T-type Ca2+ channels; however, the mechanism underlying this effect was unclear. In this study, we characterized the mechanism responsible for this blocking activity. Furthermore, the blocking activity was compared between two enantiomers of benidipine, (S, S)- and (R, R)-benidipine.Main methodsHuman Cav3.2 (hCav3.2) T-type Ca2+ channels stably expressed in the human embryonic kidney cell line, HEK-293, were studied in whole-cell patch-clamp recordings and Ca2+ mobilization assay.Key findingsIn whole-cell patch-clamp recordings, benidipine blocked hCav3.2 T-type Ca2+ currents elicited by depolarization to a comparable extent as efonidipine. The block was dependent on stimulation frequency and holding potential, but not test potential. Benidipine significantly shifted the steady-state inactivation curve to the hyperpolarizing direction, but had no effect on the activation curve. Benidipine prolonged the recovery from inactivation of hCav3.2 T-type Ca2+ channels without any effect on the kinetics of activation, inactivation, or deactivation. In the Ca2+ mobilization assay, benidipine was more potent than efonidipine in blocking Ca2+ influx through hCav3.2 T-type Ca2+ channels. (S, S)-Benidipine was more potent than (R, R)-benidipine in blocking hCav3.2 T-type Ca2+ currents, but there was no difference in blocking the Ca2+ influx.SignificanceWe have characterized the blocking activity of benidipine against hCav3.2 Ca2+ channels and revealed the difference between the two enantiomers of benidipine. The blocking action of benidipine could be mediated by stabilizing hCav3.2 Ca2+ channels in an inactivated state.  相似文献   

6.
Inorganic ions have been used widely to investigate biophysical properties of high voltage-activated calcium channels (HVA: Cav1 and Cav2 families). In contrast, such information regarding low voltage-activated calcium channels (LVA: Cav3 family) is less documented. We have studied the blocking effect of Cd2+, Co2+ and Ni2+ on T-currents expressed by human Cav3 channels: Cav3.1, Cav3.2, and Cav3.3. With the use of the whole-cell configuration of the patch-clamp technique, we have recorded Ca2+ (2 mM) currents from HEK−293 cells stably expressing recombinant T-type channels. Cd2+ and Co2+ block was 2- to 3-fold more potent for Cav3.2 channels (EC50 = 65 and 122 μM, respectively) than for the other two LVA channel family members. Current-voltage relationships indicate that Co2+ and Ni2+ shift the voltage dependence of Cav3.1 and Cav3.3 channels activation to more positive potentials. Interestingly, block of those two Cav3 channels by Co2+ and Ni2+ was drastically increased at extreme negative voltages; in contrast, block due to Cd2+ was significantly decreased. This unblocking effect was slightly voltage-dependent. Tail-current analysis reveals a differential effect of Cd2+ on Cav3.3 channels, which can not close while the pore is occupied with this metal cation. The results suggest that metal cations affect differentially T-type channel activity by a mechanism involving the ionic radii of inorganic ions and structural characteristics of the channels pore.  相似文献   

7.
We used MCF-7 human breast cancer cells that endogenously express Cav3.1 and Cav3.2 T-type Ca2+ channels toward a mechanistic study on the effect of EGCG on [Ca2+]i. Confocal Ca2+ imaging showed that EGCG induces a [Ca2+]i spike which is due to extracellular Ca2+ entry and is sensitive to catalase and to low-specificity (mibefradil) and high-specificity (Z944) T-type Ca2+channel blockers. siRNA knockdown of T-type Ca2+ channels indicated the involvement of Cav3.2 but not Cav3.1. Application of EGCG to HEK cells expressing either Cav3.2 or Cav3.1 induced enhancement of Cav3.2 and inhibition of Cav3.1 channel activity. Measurements of K+ currents in MCF-7 cells showed a reversible, catalase-sensitive inhibitory effect of EGCG, while siRNA for the Kv1.1 K+ channel induced a reduction of the EGCG [Ca2+]i spike. siRNA for Cav3.2 reduced EGCG cytotoxicity to MCF-7 cells, as measured by calcein viability assay. Together, data suggest that EGCG promotes the activation of Cav3.2 channels through K+ current inhibition leading to membrane depolarization, and in addition increases Cav3.2 currents. Cav3.2 channels are in part responsible for EGCG inhibition of MCF-7 viability, suggesting that deregulation of [Ca2+]i by EGCG may be relevant in breast cancer treatment.  相似文献   

8.
9.
Low voltage-activated T-type calcium (Ca) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct T-type Ca channel isoforms can be generated by alternative splicing from each of three different T-type genes (CaV3.1, CaV3.2, CaV3.3), although it remains to be described whether specific splice variants are associated with developmental states and pathological conditions. We aimed to identify and functionally characterize CaV3.2 T-type Ca channel alternatively spliced variants from newborn animals and to compare with adult normotensive and spontaneously hypertensive rats (SHR). DNA sequence analysis of full-length CaV3.2 cDNA generated from newborn heart tissue identified ten major regions of alternative splicing, the more common variants of which were analyzed by quantitative real-time PCR (qRT-PCR) and also subject to functional examination by whole-cell patch clamp. The main findings are that: (1) cardiac CaV3.2 T-type Ca channels are subject to considerable alternative splicing, (2) there is preferential expression of CaV3.2(−25) splice variant channels in newborn rat heart with a developmental shift in adult heart that results in approximately equal levels of expression of both (+25) and (−25) exon variants, (3) in the adult stage of hypertensive rats there is both an increase in overall CaV3.2 expression and a shift towards expression of CaV3.2(+25) containing channels as the predominant form and (4) alternative splicing confers a variant-specific voltage-dependent facilitation of CaV3.2 channels. We conclude that CaV3.2 alternative splicing generates significant T-type Ca channel structural and functional diversity with potential implications relevant to cardiac developmental and pathophysiological states.Key words: voltage-dependent facilitation, alternative splicing, T-type calcium channel, hypertension, cardiac hypertrophy  相似文献   

10.
Low voltage-activated T-type calcium (Ca) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct T-type Ca channel isoforms can be generated by alternative splicing from each of three different T-type genes (CaV3.1, CaV3.2,CaV3 .3), although it remains to be described whether specific splice variants are associated with developmental states and pathological conditions. We aimed to identify and functionally characterize CaV3.2 T-type Ca channel alternatively spliced variants from newborn animals and to compare with adult normotensive and spontaneously hypertensive rats (SHR). DNA sequence analysis of full-length CaV3.2 cDNA generated from newborn heart tissue identified ten major regions of alternative splicing, the more common variants of which were analyzed by quantitative real-time PCR (qRT-PCR) and also subject to functional examination by whole-cell patch clamp. The main findings are that: (1) cardiac CaV3.2 T-type Ca channels are subject to considerable alternative splicing, (2) there is preferential expression ofCaV3 .2(-25) splice variant channels in newborn rat heart with a developmental shift in adult heart that results in approximately equal levels of expression of both (+25) and (-25) exon variants, (3) in the adult stage of hypertensive rats there is a both an increase in overallCaV3 .2 expression and a shift towards expression of CaV3.2(+25) containing channels as the predominant form, and (4) alternative splicing confers a variant-specific voltage-dependent facilitation ofCaV3 .2 channels. We conclude that CaV3.2 alternative splicing generates significant T-type Ca channel structural and functional diversity with potential implications relevant to cardiac developmental and pathophysiological states.  相似文献   

11.
L-type voltage gated Ca2+ channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca2+ channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pressures (40–80 mmHg) T-type channels affect myogenic responses in cerebral and mesenteric vascular beds. T-type channels also seem to be involved in skeletal muscle autoregulation. This review discusses the expression and role of T-type voltage gated Ca2+ channels in the autoregulation of several different vascular beds. Lack of specific pharmacological inhibitors has been a huge challenge in the field. Now the research has been strengthened by genetically modified models such as mice lacking expression of T-type voltage gated Ca2+ channels (CaV3.1 and CaV3.2). Hopefully, these new tools will help further elucidate the role of voltage gated T-type Ca2+ channels in autoregulation and vascular function.  相似文献   

12.
Low voltage-activated T-type Cav3.2 calcium channels are expressed in neurosecretory chromaffin cells of the adrenal medulla. Previous studies have shown that naïve adrenal chromaffin cells express a nominal Cav3.2-dependent conductance. However, Cav3.2 conductance is up-regulated following chronic hypoxia or long term exposure to cAMP analogs. Thus, although a link between chronic stressors and up-regulation of Cav3.2 exists, there are no reports testing the specific role of Cav3.2 channels in the acute sympathoadrenal stress response. In this study, we examined the effects of acute sympathetic stress on T-type Cav3.2 calcium influx in mouse chromaffin cells in situ. Pituitary adenylate cyclase-activating peptide (PACAP) is an excitatory neuroactive peptide transmitter released by the splanchnic nerve under elevated sympathetic activity to stimulate the adrenal medulla. PACAP stimulation did not evoke action potential firing in chromaffin cells but did cause a persistent subthreshold membrane depolarization that resulted in an immediate and robust Ca2+-dependent catecholamine secretion. Moreover, PACAP-evoked secretion was sensitive to block by nickel chloride and was acutely inhibited by protein kinase C blockers. We utilized perforated patch electrophysiological recordings conducted in adrenal tissue slices to investigate the mechanism of PACAP-evoked calcium entry. We provide evidence that stimulation with exogenous PACAP and native neuronal stress stimulation both lead to a protein kinase C-mediated phosphodependent recruitment of a T-type Cav3.2 Ca2+ influx. This in turn evokes catecholamine release during the acute sympathetic stress response.  相似文献   

13.
Chen CC  Shen JW  Chung NC  Min MY  Cheng SJ  Liu IY 《PloS one》2012,7(1):e29384
Among all voltage-gated calcium channels, the T-type Ca2+ channels encoded by the Cav3.2 genes are highly expressed in the hippocampus, which is associated with contextual, temporal and spatial learning and memory. However, the specific involvement of the Cav3.2 T-type Ca2+ channel in these hippocampus-dependent types of learning and memory remains unclear. To investigate the functional role of this channel in learning and memory, we subjected Cav3.2 homozygous and heterozygous knockout mice and their wild-type littermates to hippocampus-dependent behavioral tasks, including trace fear conditioning, the Morris water-maze and passive avoidance. The Cav3.2 −/− mice performed normally in the Morris water-maze and auditory trace fear conditioning tasks but were impaired in the context-cued trace fear conditioning, step-down and step-through passive avoidance tasks. Furthermore, long-term potentiation (LTP) could be induced for 180 minutes in hippocampal slices of WTs and Cav3.2 +/− mice, whereas LTP persisted for only 120 minutes in Cav3.2 −/− mice. To determine whether the hippocampal formation is responsible for the impaired behavioral phenotypes, we next performed experiments to knock down local function of the Cav3.2 T-type Ca2+ channel in the hippocampus. Wild-type mice infused with mibefradil, a T-type channel blocker, exhibited similar behaviors as homozygous knockouts. Taken together, our results demonstrate that retrieval of context-associated memory is dependent on the Cav3.2 T-type Ca2+ channel.  相似文献   

14.
Cav3.2 T-type channels contain a high affinity metal binding site for trace metals such as copper and zinc. This site is occupied at physiologically relevant concentrations of these metals, leading to decreased channel activity and pain transmission. A histidine at position 191 was recently identified as a critical determinant for both trace metal block of Cav3.2 and modulation by redox agents. His191 is found on the extracellular face of the Cav3.2 channel on the IS3-S4 linker and is not conserved in other Cav3 channels. Mutation of the corresponding residue in Cav3.1 to histidine, Gln172, significantly enhances trace metal inhibition, but not to the level observed in wild-type Cav3.2, implying that other residues also contribute to the metal binding site. The goal of the present study is to identify these other residues using a series of chimeric channels. The key findings of the study are that the metal binding site is composed of a Asp-Gly-His motif in IS3–S4 and a second aspartate residue in IS2. These results suggest that metal binding stabilizes the closed conformation of the voltage-sensor paddle in repeat I, and thereby inhibits channel opening. These studies provide insight into the structure of T-type channels, and identify an extracellular motif that could be targeted for drug development.  相似文献   

15.
The regulation of arterial tone is critical in the spatial and temporal control of cerebral blood flow. Voltage-gated Ca2+ (CaV) channels are key regulators of excitation–contraction coupling in arterial smooth muscle, and thereby of arterial tone. Although L- and T-type CaV channels have been identified in rodent smooth muscle, little is known about the expression and function of specific CaV subtypes in human arteries. Here, we determined which CaV subtypes are present in human cerebral arteries and defined their roles in determining arterial tone. Quantitative polymerase chain reaction and Western blot analysis, respectively, identified mRNA and protein for L- and T-type channels in smooth muscle of cerebral arteries harvested from patients undergoing resection surgery. Analogous to rodents, CaV1.2 (L-type) and CaV3.2 (T-type) α1 subunits were expressed in human cerebral arterial smooth muscle; intriguingly, the CaV3.1 (T-type) subtype present in rodents was replaced with a different T-type isoform, CaV3.3, in humans. Using established pharmacological and electrophysiological tools, we separated and characterized the unique profiles of Ca2+ channel subtypes. Pressurized vessel myography identified a key role for CaV1.2 and CaV3.3 channels in mediating cerebral arterial constriction, with the former and latter predominating at higher and lower intraluminal pressures, respectively. In contrast, CaV3.2 antagonized arterial tone through downstream regulation of the large-conductance Ca2+-activated K+ channel. Computational analysis indicated that each Ca2+ channel subtype will uniquely contribute to the dynamic regulation of cerebral blood flow. In conclusion, this study documents the expression of three distinct Ca2+ channel subtypes in human cerebral arteries and further shows how they act together to orchestrate arterial tone.  相似文献   

16.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

17.
The treatment of neuropathic pain is one of the urgent unmet medical needs and T-type calcium channels are promising therapeutic targets for neuropathic pain. Several potent T-type channel inhibitors showed promising in vivo efficacy in neuropathic pain animal models and are being investigated in clinical trials. Herein we report development of novel pyrrolidine-based T-type calcium channel inhibitors by pharmacophore mapping and structural hybridisation followed by evaluation of their Cav3.1 and Cav3.2 channel inhibitory activities. Among potent inhibitors against both Cav3.1 and Cav3.2 channels, a promising compound 20n based on in vitro ADME properties displayed satisfactory plasma and brain exposure in rats according to in vivo pharmacokinetic studies. We further demonstrated that 20n effectively improved the symptoms of neuropathic pain in both SNL and STZ neuropathic pain animal models, suggesting modulation of T-type calcium channels can be a promising therapeutic strategy for the treatment of neuropathic pain.  相似文献   

18.
T-type Ca2+ channels have been implicated in tremorogenesis and motor coordination. The α1 subunit of the CaV3.1 T-type Ca2+ channel is highly expressed in motor pathways in the brain, but knockout of the CaV3.1 gene (α1G-/-) per se causes no motor defects in mice. Thus, the role of CaV3.1 channels in motor control remains obscure in vivo. Here, we investigated the effect of the CaV3.1 knockout in the null genetic background of α1 GABAA receptor (α1−/−) by generating the double mutants (α1−/−/α1G-/-). α1−/−/α1G-/- mice showed severer motor abnormalities than α1−/− mice as measured by potentiated tremor activities at 20 Hz and impaired motor learning. Propranolol, an anti-ET drug that is known to reduce the pathologic tremor in α1−/− mice, was not effective for suppressing the potentiated tremor in α1−/−/α1G-/- mice. In addition, α1−/−/α1G-/- mice showed an age-dependent loss of cerebellar Purkinje neurons. These results suggest that α1−/−/α1G-/- mice are a novel mouse model for a distinct subtype of ET in human and that CaV3.1 T-type Ca2+ channels play a role in motor coordination under pathological conditions.  相似文献   

19.
The atrioventricular node controls cardiac impulse conduction and generates pacemaker activity in case of failure of the sino-atrial node. Understanding the mechanisms of atrioventricular automaticity is important for managing human pathologies of heart rate and conduction. However, the physiology of atrioventricular automaticity is still poorly understood. We have investigated the role of three key ion channel-mediated pacemaker mechanisms namely, Cav1.3, Cav3.1 and HCN channels in automaticity of atrioventricular node cells (AVNCs). We studied atrioventricular conduction and pacemaking of AVNCs in wild-type mice and mice lacking Cav3.1 (Cav3.1-/-), Cav1.3 (Cav1.3-/-), channels or both (Cav1.3-/-/Cav3.1-/-). The role of HCN channels in the modulation of atrioventricular cells pacemaking was studied by conditional expression of dominant-negative HCN4 channels lacking cAMP sensitivity. Inactivation of Cav3.1 channels impaired AVNCs pacemaker activity by favoring sporadic block of automaticity leading to cellular arrhythmia. Furthermore, Cav3.1 channels were critical for AVNCs to reach high pacemaking rates under isoproterenol. Unexpectedly, Cav1.3 channels were required for spontaneous automaticity, because Cav1.3-/- and Cav1.3-/-/Cav3.1-/- AVNCs were completely silent under physiological conditions. Abolition of the cAMP sensitivity of HCN channels reduced automaticity under basal conditions, but maximal rates of AVNCs could be restored to that of control mice by isoproterenol. In conclusion, while Cav1.3 channels are required for automaticity, Cav3.1 channels are important for maximal pacing rates of mouse AVNCs. HCN channels are important for basal AVNCs automaticity but do not appear to be determinant for β-adrenergic regulation.  相似文献   

20.
Cav3.1 T-type Ca2+ channels play pivotal roles in neuronal low-threshold spikes, visceral pain, and pacemaker activity. Phosphorylation has been reported to potently regulate the activity and gating properties of Cav3.1 channels. However, systematic identification of phosphorylation sites (phosphosites) in Cav3.1 channel has been poorly investigated. In this work, we analyzed rat Cav3.1 protein expressed in HEK-293 cells by mass spectrometry, identified 30 phosphosites located at the cytoplasmic regions, and illustrated them as a Cav3.1 phosphorylation map which includes the reported mouse Cav3.1 phosphosites. Site-directed mutagenesis of the phosphosites to Ala residues and functional analysis of the phospho-silent Cav3.1 mutants expressed in Xenopus oocytes showed that the phospho-silent mutation of the N-terminal Ser18 reduced its current amplitude with accelerated current kinetics and negatively shifted channel availability. Remarkably, the phospho-silent mutations of the C-terminal Ser residues (Ser1924, Ser2001, Ser2163, Ser2166, or Ser2189) greatly reduced their current amplitude without altering the voltage-dependent gating properties. In contrast, the phosphomimetic Asp mutations of Cav3.1 on the N- and C-terminal Ser residues reversed the effects of the phospho-silent mutations. Collectively, these findings demonstrate that the multiple phosphosites of Cav3.1 at the N- and C-terminal regions play crucial roles in the regulation of the channel activity and voltage-dependent gating properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号