首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Autophagy is a conserved proteolytic mechanism required for maintaining cellular homeostasis. The role of this process in vertebrate neural development is related to metabolic needs and stress responses, even though the importance of its progression has been observed in a number of circumstances, both in embryonic and in postnatal differentiating tissues. Here we show that the proautophagic proteins Ambra1 and Beclin 1, involved in the initial steps of autophagosome formation, are highly expressed in the adult subventricular zone (SVZ), whereas their downregulation in adult neural stem cells in vitro leads to a decrease in cell proliferation, an increase in basal apoptosis and an augmented sensitivity to DNA-damage-induced death. Further, Beclin 1 heterozygosis in vivo results in a significant reduction of proliferating cells and immature neurons in the SVZ, accompanied by a marked increase in apoptotic cell death. In sum, we propose that Ambra1- and Beclin 1-mediated autophagy plays a crucial role in adult neurogenesis, by controlling the survival of neural precursor cells.In the adult mammalian brain, neural stem cells are localized in two regions: in the subventricular zone (SVZ), a layer extending along the wall of the lateral ventricle, and in the subgranular zone of the dentate gyrus in the hippocampus.1 SVZ stem cells are strictly controlled under physiological conditions and are believed to replenish dying cells. In addition to their effect in maintaining brain homeostasis, they are also involved in neuronal replacement in response to injury.2 Although several factors are known to affect neurogenesis, understanding of the mechanisms that regulate adult neurogenic niches and their metabolism is still incomplete. Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved cellular turnover process in which bulk cytoplasmic materials, long-lived proteins or damaged organelles are sequestered and delivered to lysosomes for degradation.3 A complex crosstalk takes place between apoptosis and autophagy that determines the death or life of cells.4 Beclin 1 has a key role in autophagy initiation;5 it regulates the autophagy-promoting activity of the Class III PI 3-kinase Vps34,6 and is involved in the recruitment of membranes to form the key autophagy vesicles, named autophagosomes. Beclin 1 also interacts with Bcl-2,7 and plays an important function in the regulation of cell survival.8 Ambra1 (activating molecule in Beclin 1-regulated autophagy) is another modulator of autophagy, which is phosphorylated by the upstream autophagy kinase Ulk1 and acts on Ulk1 stability and function.9, 10 Ambra1 also interacts with Beclin 1 upon autophagic stimuli, thereby promoting the binding between Beclin 1 and its target kinase, Vps34. The binding between Ambra1 and mitochondrial Bcl-2 is also important for cell survival.11 Moreover, Ambra1 is crucial for nervous system development and is expressed from early neurulation onwards, with a high specificity for the neural plate.12In contrast with studies on the pro-survival impact of autophagy in post-mitotic cells and in disease models, the role of autophagy in the maintenance and function of adult neural stem cells (ANSCs) is poorly understood. Here we have found that expression of upstream autophagy-regulating genes in the adult neurogenic region of SVZ, in physiological conditions, plays a crucial role in the regulation of adult neurogenesis.  相似文献   

2.
3.
The subventricular zone (SVZ) is a major reservoir for stem cells in the adult mammalian brain. Neural stem cells supply the olfactory bulb with new interneurons and provide cells that migrate towards lesioned brain areas. Neuropeptide Y (NPY), one of the most abundant neuropeptides in the brain, was previously shown to induce neuroproliferation on mice SVZ cells. In the present study, performed in rats, we demonstrate the endogenous synthesis of NPY by cells in the SVZ that suggests that NPY could act as an autocrine/paracrine factor within the SVZ area. We observed that NPY promotes SVZ cell proliferation as previously reported in mice, but does not affect self-renewal of SVZ stem cells. Additionally, this study provides the first direct evidence of a chemokinetic activity of NPY on SVZ cells. Using pharmacological approaches, we demonstrate that both the mitogenic and chemokinetic properties of NPY involve Y1 receptor-mediated activation of the ERK1/2 MAP kinase pathway. Altogether, our data establish that NPY through Y1 receptors activation controls chemokinetic activity and, as for mice, is a major neuroproliferative regulator of rat SVZ cells.  相似文献   

4.
室管膜下区(subventricular zone,SVZ)存在着神经干细胞(nueral stem cells,NSCs),是成年哺乳动物脑内重要的神经发生区域。神经发生过程极为复杂,包括一系列的生物学事件。在病理状态下,SVZ区的细胞增殖,新生的神经细胞迁移到病灶处,取代或修复受损的细胞,起到保护脑组织的作用。该文就SVZ区的神经干细胞、神经发生过程及病理状态下神经发生的相关研究做一综述。  相似文献   

5.
6.
Wang C  Liu F  Liu YY  Zhao CH  You Y  Wang L  Zhang J  Wei B  Ma T  Zhang Q  Zhang Y  Chen R  Song H  Yang Z 《Cell research》2011,21(11):1534-1550
It is of great interest to identify new neurons in the adult human brain, but the persistence of neurogenesis in the subventricular zone (SVZ) and the existence of the rostral migratory stream (RMS)-like pathway in the adult human forebrain remain highly controversial. In the present study, we have described the general configuration of the RMS in adult monkey, fetal human and adult human brains. We provide evidence that neuroblasts exist continuously in the anterior ventral SVZ and RMS of the adult human brain. The neuroblasts appear singly or in pairs without forming chains; they exhibit migratory morphologies and co-express the immature neuronal markers doublecortin, polysialylated neural cell adhesion molecule and βIII-tubulin. Few of these neuroblasts appear to be actively proliferating in the anterior ventral SVZ but none in the RMS, indicating that neuroblasts distributed along the RMS are most likely derived from the ventral SVZ. Interestingly, no neuroblasts are found in the adult human olfactory bulb. Taken together, our data suggest that the SVZ maintains the ability to produce neuroblasts in the adult human brain.  相似文献   

7.

Neural stem cells (NSCs) are multipotent, self-renewable cells who are capable of differentiating into neurons, astrocytes, and oligodendrocytes. NSCs reside at the subventricular zone (SVZ) of the adult brain permanently to guarantee a lifelong neurogenesis during neural network plasticity or undesirable injuries. Although the specious inaccessibility of adult NSCs niche hampers their in vivo identification, researchers have been seeking ways to optimize adult NSCs isolation, expansion, and differentiation, in vitro. NSCs were isolated from rhesus monkey SVZ, expanded in vitro and then characterized for NSCs-specific markers expression by immunostaining, real-time PCR, flow cytometry, and cell differentiation assessments. Moreover, cell survival as well as self-renewal capacity were evaluated by TUNEL, Live/Dead and colony assays, respectively. In the next step, to validate SVZ-NSCs identity in other species, a similar protocol was applied to isolate NSCs from adult rat’s SVZ as well. Our findings revealed that isolated SVZ-NSCs from both monkey and rat preserve proliferation capacity in at least nine passages as confirmed by Ki67 expression. Additionally, both SVZ-NSCs sources are capable of self-renewal in addition to NESTIN, SOX2, and GFAP expression. The mortality was measured meager with over 95% viability according to TUNEL and Live/Dead assay results. Eventually, the multipotency of SVZ-NSCs appraised authentic after their differentiation into neurons, astrocytes, and oligodendrocytes. In this study, we proposed a reliable method for SVZ-NSCs in vitro maintenance and identification, which, we believe is a promising cell source for therapeutic approach to recover neurological disorders and injuries condition.

  相似文献   

8.
Sui Y  Horne MK  Stanić D 《PloS one》2012,7(2):e31549
Neurogenesis in the adult brain is largely restricted to the subependymal zone (SVZ) of the lateral ventricle, olfactory bulb (OB) and the dentate subgranular zone, and survival of adult-born cells in the OB is influenced by factors including sensory experience. We examined, in mice, whether survival of adult-born cells is also regulated by the rate of precursor proliferation in the SVZ. Precursor proliferation was decreased by depleting the SVZ of dopamine after lesioning dopamine neurons in the substantia nigra compacta with 6-hydroxydopamine. Subsequently, we examined the effect of reduced SVZ proliferation on the generation, migration and survival of neuroblasts and mature adult-born cells in the SVZ, rostral migratory stream (RMS) and OB. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU) injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 47% or 36%, respectively, 7 days after dopamine depletion, and by 29% or 31% 42 days after dopamine depletion, compared to sham-treated animals. Neuroblast generation in the SVZ and their migration along the RMS were not affected, neither 7 nor 42 days after the 6-hydroxydopamine injection, since the number of doublecortin-immunoreactive neuroblasts in the SVZ and RMS, as well as the number of neuronal nuclei-immunoreactive cells in the OB, were stable compared to control. However, survival analysis 15 days after 6-hydroxydopamine and 6 days after BrdU injections showed that the number of BrdU+ cells in the SVZ was 70% higher. Also, 42 days after 6-hydroxydopamine and 30 days after BrdU injections, we found an 82% increase in co-labeled BrdU+/γ-aminobutyric acid-immunoreactive cell bodies in the granular cell layer, while double-labeled BrdU+/tyrosine hydroxylase-immunoreactive cell bodies in the glomerular layer increased by 148%. We conclude that the number of OB interneurons following reduced SVZ proliferation is maintained through an increased survival of adult-born precursor cells, neuroblasts and interneurons.  相似文献   

9.
Adult neural stem cells are self-renewing multipotent cells that have the potential to replace dysfunctional and/or dying neuronal cells at the site of brain injury or degeneration. Caveolins are well-known tumor-suppressor genes that were recently found to be involved in the regulation of stem cell proliferation. For instance, ablation of the caveolin-1 (Cav-1) gene in mice markedly increases the proliferation of intestinal and mammary stem cells. However, the roles of caveolins in the proliferation of adult neural stem cells still remain unknown. In this study, dual-label immunofluorescence analysis of the proliferation marker, Ki67, and the stem cell markers, nestin and Sox2, was performed on brains of 8 week-old wild-type (WT) and Cav-1 knockout (KO) mice. Our results demonstrate an increased number of Ki67-positive nuclei in the subventricular zone (SVZ) of Cav-1 KO brains. Importantly, our dual-label immunofluorescence analyses demonstrate increased co-localization of Ki67 with both nestin and Sox2 in the SVZ of Cav-1 KO brains. Remarkably similar results were also obtained with Cav-2 and Cav-3 KO mouse brains as well, with increased proliferation of adult neural stem cells. Thus, the SVZ of caveolin KO mouse brains displays an increased proliferation of adult neural stem cells. Caveolin proteins might represent new crucial regulators of adult neural stem cell proliferation.  相似文献   

10.
Activin, a member of the transforming growth factor-beta superfamily, is an endocrine hormone that regulates differentiation and proliferation of a wide variety of cells. In the brain, activin protects neurons from ischemic damage. In this study, we demonstrate that activin modulates anxiety-related behavior by analyzing ACM4 and FSM transgenic mice in which activin and follistatin (which antagonizes the activin signal), respectively, were overexpressed in a forebrain-specific manner under the control of the alphaCaMKII promoter. Behavioral analyses revealed that FSM mice exhibited enhanced anxiety compared to wild-type littermates, while ACM4 mice showed reduced anxiety. Importantly, survival of newly formed neurons in the subgranular zone of adult hippocampus was significantly decreased in FSM mice, which was partially rescued in ACM4/FSM double transgenic mice. Our findings demonstrate that the level of activin in the adult brain bi-directionally influences anxiety-related behavior. These results further suggest that decreases in postnatal neurogenesis caused by activin inhibition affect an anxiety-related behavior in adulthood. Activin and its signaling pathway may represent novel therapeutic targets for anxiety disorder as well as ischemic brain injury.  相似文献   

11.
12.
Focal cerebral ischemia induces neurogenesis in the subventricular zone (SVZ) of the adult human brain. Neurogenesis is controlled by proliferation, differentiation, and migration of neural progenitor cells. This article reviews emerging data that changes of cell cycle kinetics of neural progenitor cells induced by stroke contribute to increased neural progenitor cell proliferation and that gene profiles control proliferation, differentiation, and migration of neural progenitor cells within the SVZ niche. A better understanding of gene profiles that control the biological function of adult SVZ neural progenitor cells could lead to more selective and effective treatments to enhance neurogenesis during stroke recovery.  相似文献   

13.
The amyloid precursor protein (APP) is a type I transmembrane protein of unknown physiological function. Its soluble secreted form (sAPP) shows similarities with growth factors and increases the in vitro proliferation of embryonic neural stem cells. As neurogenesis is an ongoing process in the adult mammalian brain, we have investigated a role for sAPP in adult neurogenesis. We show that the subventricular zone (SVZ) of the lateral ventricle, the largest neurogenic area of the adult brain, is a major sAPP binding site and that binding occurs on progenitor cells expressing the EGF receptor. These EGF-responsive cells can be cultured as neurospheres (NS). In vitro, EGF provokes soluble APP (sAPP) secretion by NS and anti-APP antibodies antagonize the EGF-induced NS proliferation. In vivo, sAPP infusions increase the number of EGF-responsive progenitors through their increased proliferation. Conversely, blocking sAPP secretion or downregulating APP synthesis decreases the proliferation of EGF-responsive cells, which leads to a reduction of the pool of progenitors. These results reveal a new function for sAPP as a regulator of SVZ progenitor proliferation in the adult central nervous system.  相似文献   

14.
Neurogenesis proceeds throughout life in the higher vocal center (HVC) of the adult songbird neostriatum. Testosterone induces neuronal addition and endothelial division in HVC. We asked if testosterone-induced angiogenesis might contribute importantly to HVC neuronal recruitment. Testosterone upregulated both VEGF and its endothelial receptor, VEGF-R2/Quek1/KDR, in HVC. This yielded a burst in local HVC angiogenesis. FACS-isolated HVC endothelial cells produced BDNF in a testosterone-dependent manner. In vivo, HVC BDNF rose by the third week after testosterone, lagging by over a week the rise in VEGF and VEGF-R2. In situ hybridization revealed that much of this induced BDNF mRNA was endothelial. In vivo, both angiogenesis and neuronal addition to HVC were substantially diminished by inhibition of VEGF-R2 tyrosine kinase. These findings suggest a causal interaction between testosterone-induced angiogenesis and neurogenesis in the adult forebrain.  相似文献   

15.
Neural stem cells are maintained in the subventricular zone (SVZ) of the adult mammalian brain. Here, we review the cellular organization of this germinal layer and propose lineage relationships of the three main cell types found in this area. The majority of cells in the adult SVZ are migrating neuroblasts (type A cells) that continue to proliferate. These cells form an extensive network of tangentially oriented pathways throughout the lateral wall of the lateral ventricle. Type A cells move long distances through this network at high speeds by means of chain migration. Cells in the SVZ network enter the rostral migratory stream (RMS) and migrate anteriorly into the olfactory bulb, where they differentiate into interneurons. The chains of type A cells are ensheathed by slowly proliferating astrocytes (type B cells), the second most common cell type in this germinal layer. The most actively proliferating cells in the SVZ, type C, form small clusters dispersed throughout the network. These foci of proliferating type C cells are in close proximity to chains of type A cells. We discuss possible lineage relationships among these cells and hypothesize which are the neural stem cells in the adult SVZ. In addition, we suggest that interactions between type A, B, and C cells may regulate proliferation and initial differentiation within this germinal layer. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 234–248, 1998  相似文献   

16.
The stimulation of neurogenesis is an exciting novel therapeutic option for diseases of the central nervous system, ranging from depression to neurodegeneration. One major bottleneck in screening approaches for neurogenesis-inducing compounds is the very demanding in vivo quantification of newborn neurons based on stereological techniques. To effectively develop compounds in this area, novel fast and reliable techniques for quantification of in vivo neurogenesis are needed. In this study, we introduce a flow cytometry-based method for quantifying newly generated neurons in the brain based on the counting of cell nuclei from dissected brain regions. Important steps involve density sedimentation of the cell nuclei, and staining for the proliferation marker bromodeoxy uridine and nuclear cell type markers such as NeuN. We demonstrate the ability of the technique to detect increased neurogenesis in the hippocampus of animals which underwent physical exercise and received fluoxetine treatment.  相似文献   

17.
The mammalian cerebral cortex arises from precursor cells that reside in a proliferative region surrounding the lateral ventricles of the developing brain. Recent work has shown that precursor cells in the subventricular zone (SVZ) provide a major contribution to prenatal cortical neurogenesis, and that the SVZ is significantly thicker in gyrencephalic mammals such as primates than it is in lissencephalic mammals including rodents. Identifying characteristics that are shared by or that distinguish cortical precursor cells across mammalian species will shed light on factors that regulate cortical neurogenesis and may point toward mechanisms that underlie the evolutionary expansion of the neocortex in gyrencephalic mammals. We immunostained sections of the developing cerebral cortex from lissencephalic rats, and from gyrencephalic ferrets and macaques to compare the distribution of precursor cell types in each species. We also performed time-lapse imaging of precursor cells in the developing rat neocortex. We show that the distribution of Pax6+ and Tbr2+ precursor cells is similar in lissencephalic rat and gyrencephalic ferret, and different in the gyrencephalic cortex of macaque. We show that mitotic Pax6+ translocating radial glial cells (tRG) are present in the cerebral cortex of each species during and after neurogenesis, demonstrating that the function of Pax6+ tRG cells is not restricted to neurogenesis. Furthermore, we show that Olig2 expression distinguishes two distinct subtypes of Pax6+ tRG cells. Finally we present a novel method for discriminating the inner and outer SVZ across mammalian species and show that the key cytoarchitectural features and cell types that define the outer SVZ in developing primates are present in the developing rat neocortex. Our data demonstrate that the developing rat cerebral cortex possesses an outer subventricular zone during late stages of cortical neurogenesis and that the developing rodent cortex shares important features with that of primates.  相似文献   

18.
We investigated the function of cyclin-dependent kinase 2 (Cdk2) in neural progenitor cells during postnatal development. Chondroitin sulfate proteoglycan (NG2)–expressing progenitor cells of the subventricular zone (SVZ) show no significant difference in density and proliferation between Cdk2−/− and wild-type mice at perinatal ages and are reduced only in adult Cdk2−/− mice. Adult Cdk2−/− SVZ cells in culture display decreased self-renewal capacity and enhanced differentiation. Compensatory mechanisms in perinatal Cdk2−/− SVZ cells, which persist until postnatal day 15, involve increased Cdk4 expression that results in retinoblastoma protein inactivation. A subsequent decline in Cdk4 activity to wild-type levels in postnatal day 28 Cdk2−/− cells coincides with lower NG2+ proliferation and self-renewal capacity similar to adult levels. Cdk4 silencing in perinatal Cdk2−/− SVZ cells abolishes Cdk4 up-regulation and reduces cell proliferation and self- renewal to adult levels. Conversely, Cdk4 overexpression in adult SVZ cells restores proliferative capacity to wild-type levels. Thus, although Cdk2 is functionally redundant in perinatal SVZ, it is important for adult progenitor cell proliferation and self-renewal through age-dependent regulation of Cdk4.  相似文献   

19.
While the study of in vitro regulation of neural stem cell lineage from both embryonic and adult neurospheres is greatly advanced, much less is known about factors acting in situ for neural stem cell lineage in adult brain. We reported that neurotrophin low affinity receptor p75NTR is present in the subventricular zone (SVZ) in adult male rats. We then characterized co-distribution of markers associated with precursor cells (nestin and PSA-NCAM) with growth factor receptors (p75NTR, trkA, EGFr) and proliferation-associated antigens (Ki67 and BrDU-uptake) in adult male rat by immunocytochemistry and confocal laser scan microscopy. Distribution of p75NTR-immunoreactivity (IR) was investigated using different mono- and polyclonal antisera. p75NTR is not co-distributed with glial fibrillary acid protein. It was found to be co-distributed with a small number of nestin-IR cells, whereas no coexistence with PSA-NCAM-IR was observed. Conversely, p75NTR-IR was present in numerous dividing cells (Ki-67-positive) and co-distributed with EGFr. In order to verify the possible association between p75NTR and cell death, we investigated co-distribution of p75NTR-IR with nuclear condensation images as visualized by Hoechst 33258 staining. While few images indicating nuclear condensation were observed in the SVZ, no coexistence with p75NTR was found. TrkA- and trkB-IR was not found in the SVZ. We also investigated p75NTR immunostaining on post-natal day 1 and day 16, because of the dramatic reduction of proliferating cells in SVZ over this time-interval. p75NTR-IR was not increased in the early post-natal phase. Thus, p75NTR seems to be associated with cell cycle regulation in SVZ in adult rat brain.  相似文献   

20.
BACKGROUND: Arousal levels in the brain set thresholds for behavior, from simple to complex. The mechanistic underpinnings of the various phenomena comprising arousal, however, are still poorly understood. Drosophila behaviors have been studied that span different levels of arousal, from sleep to visual perception to psychostimulant responses. RESULTS: We have investigated neurobiological mechanisms of arousal in the Drosophila brain by a combined behavioral, genetic, pharmacological, and electrophysiological approach. Administration of methamphetamine (METH) suppresses sleep and promotes active wakefulness, whereas an inhibitor of dopamine synthesis promotes sleep. METH affects courtship behavior by increasing sexual arousal while decreasing successful sexual performance. Electrophysiological recordings from the medial protocerebrum of wild-type flies showed that METH ingestion has rapid and detrimental effects on a brain response associated with perception of visual stimuli. Recordings in genetically manipulated animals show that dopaminergic transmission is required for these responses and that visual-processing deficits caused by attenuated dopaminergic transmission can be rescued by METH. CONCLUSIONS: We show that changes in dopamine levels differentially affect arousal for behaviors of varying complexity. Complex behaviors, such as visual perception, degenerate when dopamine levels are either too high or too low, in accordance with the inverted-U hypothesis of dopamine action in the mammalian brain. Simpler behaviors, such as sleep and locomotion, show graded responses that follow changes in dopamine level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号