共查询到20条相似文献,搜索用时 15 毫秒
1.
Wolbachia is a genus of parasitic alphaproteobacteria found in arthropods and nematodes, and represents on of the most common, widespread endosymbionts known. Wolbachia affects a variety of reproductive functions in its host (e.g., male killing, cytoplasmic incompatibility, parthenogenesis), which have the potential to dramatically impact host evolution and species formation. Here, we present the first broad-scale study to screen natural populations of native Hawaiian insects for Wolbachia, focusing on the endemic Diptera. Results indicate that Wolbachia infects native Hawaiian taxa, with alleles spanning phylogenetic supergroups, A and B. The overall frequency of Wolbachia incidene in Hawaiian insects was 14%. The incidence of infection in native Hawaiian Diptera was 11% for individuals and 12% for all species screened. Wolbachia was not detected in two large, widespread Hawaiian dipteran families—Dolichopodidae (44 spp screened) and Limoniidae (12 spp screened). Incidence of infection within endemic Hawaiian lineages that carry Wolbachia was 18% in Drosophilidae species, 25% in Caliphoridae species, > 90% in Nesophrosyne species, 20% in Drosophila dasycnemia and 100% in Nesophrosyne craterigena. Twenty unique alleles were recovered in this study, of which 18 are newly recorded. Screening of endemic populations of D. dasycnemia across Hawaii Island revealed 4 unique alleles. Phylogenetic relationships and allele diversity provide evidence for horizontal transfer of Wolbachia among Hawaiian arthropod lineages. 相似文献
2.
Kittayapong P Jamnongluk W Thipaksorn A Milne JR Sindhusake C 《Molecular ecology》2003,12(4):1049-1060
Wolbachia are a group of intracellular bacteria that cause reproductive alterations in their arthropod hosts. Widely discordant host and Wolbachia phylogenies indicate that horizontal transmission of these bacteria among species sometimes occurs. A likely means of horizontal transfer is through the feeding relations of organisms within communities. Feeding interactions among insects within the rice-field insect community have been well documented in the past. Here, we present the results of a polymerase chain reaction-based survey and phylogenetic analysis of Wolbachia strains in the rice-field insect community of Thailand. Our field survey indicated that 49 of 209 (23.4%) rice-field insect species were infected with Wolbachia. Of the 49 infected species, 27 were members of two feeding complexes: (i) a group of 13 hoppers preyed on by 2 mirid species and parasitized by a fly species, and (ii) 2 lepidopteran pests parasitized by 9 wasp species. Wolbachia strains found in three hoppers, Recilia dorsalis, Nephotettix malayanus and Nisia nervosa, the two mirid predators, Cyrtorhinus lividipennis and Tytthus chinensis, and the fly parasitoid, Tomosvaryella subvirescens, were all in the same Wolbachia clade. In the second complex, the two lepidopteran pests, Cnaphalocrocis medinalis and Scirpophaga incertulas, were both infected with Wolbachia from the same clade, as was the parasitoid Tropobracon schoenobii. However, none of the other infected parasitoid species in this feeding complex was infected by Wolbachia from this clade. Mean (+/- SD) genetic distance of Wolbachia wsp sequences among interacting species pairs of the hopper feeding complex (0.118 +/- 0.091 nucleotide sequence differences), but not for the other two complexes, was significantly smaller than that between noninteracting species pairs (0.162 +/- 0.079 nucleotide sequence differences). Our results suggest that some feeding complexes, such as the hopper complex described here, could be an important means by which Wolbachia spreads among species within arthropod communities. 相似文献
3.
4.
JULIE K. STAHLHUT CHRISTOPHER A. DESJARDINS MICHAEL E. CLARK LAURA BALDO JACOB A. RUSSELL JOHN H. WERREN JOHN JAENIKE 《Molecular ecology》2010,19(9):1940-1952
Wolbachia infect a variety of arthropod and nematode hosts, but in arthropods, host phylogenetic relationships are usually poor predictors of strain similarity. This suggests that new infections are often established by horizontal transmission. To gain insight into the factors affecting the probability of horizontal transmission among host species, we ask how host phylogeny, geographical distribution and ecology affect patterns of Wolbachia strain similarity. We used multilocus sequence typing (MLST) to characterize Wolbachia strain similarity among dipteran hosts associated with fleshy mushrooms. Wolbachia Supergroup A was more common than Supergroup B in Diptera, and also more common in mycophagous than non‐mycophagous Diptera. Within Supergroup A, host family within Diptera had no effect on strain similarity, and there was no tendency for Wolbachia strains from sympatric host species to be more similar to one another than to strains from hosts in different biogeographical realms. Supergroup A strains differed between mycophagous and non‐mycophagous Diptera more than expected by chance, suggesting that ecological associations can facilitate horizontal transmission of Wolbachia within mycophagous fly communities. For Supergroup B, there were no significant associations between strain similarity and host phylogeny, biogeography, or ecology. We identified only two cases in which closely related hosts carried closely related Wolbachia strains, evidence that Wolbachia‐host co‐speciation or early introgression can occur but may not be a major contributor to overall strain diversity. Our results suggest that horizontal transmission of Wolbachia can be influenced by host ecology, thus leading to partial restriction of Wolbachia strains or strain groups to particular guilds of insects. 相似文献
5.
Lin-Lin Chen James M. Cook Hui Xiao Hao-Yuan Hu Li-Ming Niu Da-Wei Huang 《Insect Science》2010,17(2):101-111
Abstract Wolbachia are endosymbiotic bacteria that infect numerous arthropod species. Previous studies in Panama and Australia revealed that the majority of fig wasp species harbor Wolbachia infections, but that similar patterns of incidence have evolved independently with different wasp species and Wolbachia strains on the two continents. We found Wolbachia infections in 25/47 species (53%) of fig wasp associated with 25 species of Chinese figs. Phylogenetic analyses of Wolbachia wsp sequences indicated that very similar strains are not obviously found in either closely related or ecologically linked fig wasps species. The extremely high prevalence of Wolbachia in fig wasps (over 50% of species infected) is not constrained by geographical origin and is a recurrent theme of fig wasp/Wolbachia interactions. 相似文献
6.
Although the intracellular bacterium Wolbachia is ubiquitous in insects, it has a unique relationship with New World ants on which particular bacterial strains have specialized. However, data are from distantly related hosts and detailed phylogenetic information which could reveal transmission dynamics are lacking. Here, we investigate host–Wolbachia relationships in the monophyletic fungus‐growing ant tribe Attini, screening 23 species and using multilocus sequence typing to reliably identify Wolbachia strains. This technique reduces the significant problem of recombination seen using traditional single gene techniques. The relationship between Wolbachia and the fungus‐growing ants appears complex and dynamic. There is evidence of co‐cladogenesis, supporting vertical transmission; however, this is incomplete, demonstrating that horizontal transmission has also occurred. Importantly, the infection prevalence is frequently different between closely related taxa, with the Acromyrmex leaf‐cutting ants appearing particularly prone to infection and there being no consistent relationship with any of the major life history transitions. We suggest that infection loss and horizontal transmission have driven epidemics or selective sweeps of Wolbachia, resulting in multiple gains and losses of infection across the fungus‐growing ants. 相似文献
7.
Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species 总被引:29,自引:0,他引:29
Growth, biomass allocation, and photosynthetic characteristics of seedlings of five invasive non-indigenous and four native
species grown under different light regimes were studied to help explain the success of invasive species in Hawaiian rainforests.
Plants were grown under three greenhouse light levels representative of those found in the center and edge of gaps and in
the understory of Hawaiian rainforests, and under an additional treatment with unaltered shade. Relative growth rates (RGRs)
of invasive species grown in sun and partial shade were significantly higher than those for native species, averaging 0.25
and 0.17 g g−1 week−1, respectively, while native species averaged only 0.09 and 0.06 g g−1 week−1, respectively. The RGR of invasive species under the shade treatment was 40% higher than that of native species. Leaf area
ratios (LARs) of sun and partial-shade-grown invasive and native species were similar but the LAR of invasive species in the
shade was, on average, 20% higher than that of native species. There were no differences between invasive and native species
in biomass allocation to shoots and roots, or in leaf mass per area across light environments. Light-saturated photosynthetic
rates (Pmax) were higher for invasive species than for native species in all light treatments. Pmax of invasive species grown
in the sun treatment, for example, ranged from 5.5 to 11.9 μmol m−2 s−1 as compared with 3.0−4.5 μmol m−2 s−1 for native species grown under similar light conditions. The slope of the linear relationship between Pmax and dark respiration
was steeper for invasive than for native species, indicating that invasive species assimilate more CO2 at a lower respiratory cost than native species. These results suggest that the invasive species may have higher growth rates
than the native species as a consequence of higher photosynthetic capacities under sun and partial shade, lower dark respiration
under all light treatments, and higher LARs when growing under shade conditions. Overall, invasive species appear to be better
suited than native species to capturing and utilizing light resources, particularly in high-light environments such as those
characterized by relatively high levels of disturbance.
Received: 30 December 1997 / Accepted: 1 September 1998 相似文献
8.
All organisms are infected with a range of symbionts spanning the spectrum of beneficial mutualists to detrimental parasites. The fruit fly Drosophila melanogaster is a good example, as both endosymbiotic Wolbachia, and pathogenic Drosophila C Virus (DCV) commonly infect it. While the pathophysiology and immune responses against both symbionts are the focus of intense study, the behavioural effects of these infections have received less attention. Here we report sex-specific behavioural responses to these infections in D. melanogaster. DCV infection caused increased sleep in female flies, but had no detectable effect in male flies. The presence of Wolbachia did not reduce this behavioural response to viral infection. We also found evidence for a sex-specific cost of Wolbachia, as male flies infected with the endosymbiont became more lethargic when awake. We discuss these behavioural symptoms as potentially adaptive sickness behaviours. 相似文献
9.
The maternally inherited bacterium Wolbachia pipientis infects 25-75% of arthropods and manipulates host reproduction to improve its transmission. One way Wolbachia achieves this is by inducing cytoplasmic incompatibility (CI), where crosses between infected males and uninfected females are inviable. Infected males suffer reduced fertility through CI and reduced sperm production. However, Wolbachia induce lower levels of CI in nonvirgin males. We examined the impact of Wolbachia on mating behaviour in male Drosophila melanogaster and D. simulans, which display varying levels of CI, and show that infected males mate at a higher rate than uninfected males in both species. This may serve to increase the spread of Wolbachia, or alternatively, may be a behavioural adaptation employed by males to reduce the level of CI. Mating at high rate restores reproductive compatibility with uninfected females resulting in higher male reproductive success thus promoting male promiscuity. Increased male mating rates also have implications for the transmission of Wolbachia. 相似文献
10.
Thirty‐five percent of isopods are estimated to be infected by Wolbachia, an intracellular maternally inherited α‐Proteobacterium. Previous studies have indicated that horizontal transfer of Wolbachia strains may occur, although the mechanisms are unclear. The wsp gene was sequenced from 17 Wolbachia strains harboured by crustacean host species and three from their associated predators and parasites. Two major clades of Wolbachia were found in crustacean, with relatives also found in insects, the other restricted to crustaceans. Highly divergent Wolbachia strains were found in a woodlouse‐eating spider and its prey, suggesting no intertaxon bacterial exchange via the predator–prey route. The phylogenetic proximity of Wolbachia from parasitoid flies or phoretic mites to those from isopods suggests that horizontal symbiont transmission may have occurred between those taxa. Two distant Wolbachia strains were detected in two intertidal amphipods; these strains were closely related to different coastal isopod symbionts, suggesting Wolbachia transmission may occur between distantly related crustacean hosts living under the same ecological conditions. 相似文献
11.
Drought response of a native and introduced Hawaiian grass 总被引:6,自引:0,他引:6
The alien grass, Pennisetum setaceum, dominates many of the lowland arid regions that once supported native Heteropogon contortus grassland on the island of Hawaii. Response to drought in a glasshouse was compared between these C4 grasses to test if success as an invader is related to drought tolerance or plasticity for traits that confer drought tolerance. Pennisetum produced 51% more total biomass, allocated 49% more biomass to leaves, and had higher net photosynthetic rates (P
n) on a leaf area basis than Heteropogon. Plants of both species under drought produced less total biomass and increased their allocation to roots compared to well-watered plants, but there was no difference between the two species in the magnitude of these responses. The decline in P
n with decreasing leaf water potential (1) was greater for Pennisetum compared to Heteropogon. Plasticity in the response of P
n to 1, osmotic potentials, and the water potentials at turgor loss in response to drought were not different between the two species. Stomata were more responsive to w in Heteropogon than in Pennisetum and for well-watered plants compared to droughted plants. Plasticity for the stomatal response to w, however, was not different between the species. There was no evidence that the alien, Pennisetum, had greater plasticity for traits related to drought tolerance compared to the native, Heteropogon. Higher P
n and greater biomass allocation to leaves resulted in greater growth for Pennisetum compared to Heteropogon and may explain the success of Pennisetum as an invader of lowland arid zones on Hawaii. 相似文献
12.
Ballard JW 《Molecular biology and evolution》2004,21(3):428-442
This study aims to unravel the biogeography of a model symbiont/host system by exploiting the prediction that a symbiont will leave a signature of infection on the host. Specifically, a global sample of 1,442 Drosophila simulans from 33 countries and 64 sampling localities was employed to infer the phylogeography of the maternally inherited alpha-proteobacteria Wolbachia. Phylogenetic analyses, from three symbiont genes and 24 mtDNA genomes (excluding the A + T-rich region), showed that each of four Wolbachia strains infected D. simulans once. The global distribution and abundance of the Wolbachia strains and the three mtDNA haplogroups (D. simulans siI, siII and siIII) was then determined. Finally, network analyses of variable regions within siI (584 bp from seven additional lines) and siII (1,701 bp from 383 lines) facilitated a detailed biogeographic discussion. There is little variation in siIII and the haplogroup is restricted in its distribution. These data show how the history of an infection can be mapped by combining data from the symbiont and the host. They say little about the organismal history of the host because the mtDNA genome is a biased representation of the whole genome. 相似文献
13.
14.
Allele-frequency data have been assembled for 35 blood-protein loci in 17 of 19 recognized species of Macaca based on 29 published electrophoretic studies; studies of inbred captive colonies have been excluded. Data for 22 polymorphic loci are tabulated in detail for 43 geographic populations of these species. Calculated FST values provide a measure of intergroup genetic differentiation at various hierarchical levels—troop, locality, province, country or island, species, species group; polymorphism indices measure genetic variation. The greatest intraspecific genetic differentiation occurs at the level of island populations within species. The pattern of genetic variation among island populations appears to be relictual, suggesting that the reduced genetic variability of island populations of macaques is a result of postisolation genetic drift rather than founder effect. Interspecific relationships were investigated by means of a jackknifed Fitch-Margoliash algorithm, using Papio as outgroup. Phylogenetic inferences based on morphology and zoogeography. The reduced genetic variability that frequently characterizes insular macaque populations complicates phylogenetic interpretation of blood-protein evidence. 相似文献
15.
Horizontal gene transfer (HGT) may result in genes whose evolutionary histories disagree with each other, as well as with the species tree. In this case, reconciling the species and gene trees results in a network of relationships, known as the "phylogenetic network" of the set of species. A phylogenetic network that incorporates HGT consists of an underlying species tree that captures vertical inheritance and a set of edges which model the "horizontal" transfer of genetic material. In a series of papers, Nakhleh and colleagues have recently formulated a maximum parsimony (MP) criterion for phylogenetic networks, provided an array of computationally efficient algorithms and heuristics for computing it, and demonstrated its plausibility on simulated data. In this article, we study the performance and robustness of this criterion on biological data. Our findings indicate that MP is very promising when its application is extended to the domain of phylogenetic network reconstruction and HGT detection. In all cases we investigated, the MP criterion detected the correct number of HGT events required to map the evolutionary history of a gene data set onto the species phylogeny. Furthermore, our results indicate that the criterion is robust with respect to both incomplete taxon sampling and the use of different site substitution matrices. Finally, our results show that the MP criterion is very promising in detecting HGT in chimeric genes, whose evolutionary histories are a mix of vertical and horizontal evolution. Besides the performance analysis of MP, our findings offer new insights into the evolution of 4 biological data sets and new possible explanations of HGT scenarios in their evolutionary history. 相似文献
16.
Aim: The Wolbachia strain wMel can protect Drosophila melanogaster against pathogenic RNA viruses. To analyse the potential of this inhibitory effect against arboviruses vectorized by these mosquitoes, we here first transinfected the Aedes albopictus Aa23 and C6/36 cell lines with the Wolbachia strain wMel and then monitored their infection dynamics. Methods and Results: Wolbachia strain wMel was transferred into A. albopictus Aa23 and C6/36 cell lines using the shell vial technique. The presence of the bacterium in the transinfected cells was monitored by quantitative PCR and fluorescence in situ hybridization. Bacteria could be detected in the cytoplasm of both the Aa23 and C6/36 cell lines. However, the dynamics and stability of the bacterial infection differed depending on the initial cell background. The Aa23 cell line, which had been treated with a tetracycline antibiotic 2 years previously to eliminate its natural Wolbachia wAlbB‐infecting strain, lost the introduced Wolbachia wMel strain after 12 passages postinfection. In contrast, the C6/36 cell line, which had originally been aposymbiotic, displayed a stable infection with Wolbachia wMel. The bacterial density in C6/36 was greater than that of the A. albopictus RML12 cell line from which the wMel strain had originated. Conclusions: Transient or persistent transinfection of A. albopictus Aa23 and C6/36 cell lines with Wolbachia wMel strain was achieved. The results indicate the influence of the genetic background of mosquito cells in maintaining Wolbachia originating from a distant dipteral host. Significance and Impact of the Study: The cell model built here can now be used to investigate the viral inhibitory effect of the Wolbachia wMel strain against arboviruses such as dengue and chikungunya, which are transmitted by the mosquito A. albopictus. 相似文献
17.
The acquisition of endosymbiotic alphaproteobacteria that gave rise to mitochondria was one of the key events in the origin of eukaryotic cell. To reconstruct this process, it is important to analyze relationships that developed later between eukaryotes and other alphaproteobacteria. Wolbachia pipientis, a bacterium that inhabits cells of numerous terrestrial invertebrates and exerts diverse effects on its hosts, is used as a model. Although Wolbachia is similar to mitochondria in many important features (basic metabolism, small molecule membrane transport, envelope structure, etc.), their relationships with the nucleocytoplasm are different. Mitochondria import most of their required proteins from the nucleocytoplasm and are controlled by the nucleocytoplasmic regulatory systems. On the contrary, Wolbachia exports its proteins into the host’s cytoplasm, thus causing dramatic aberrations in the ontogeny and reproduction of the host. This difference may be due to the fact that most of the protomitochondrial genes had been transferred into the central (nuclear) genome at the early stages of the development of the endosymbiotic system, while Wolbachia genes were not transferred into the nucleus. This fits well with the previously suggested hypothesis that there was a period of rapid lateral gene transfer in the evolution of proto-eukaryotes; the acquisition of mitochondria took place during this period. Later, eukaryotes, and especially metazoans, developed powerful mechanisms for prevention of lateral gene transfer. Therefore, the genes of the newly acquired endosymbionts cannot be transferred into the central genome, and the endosymbionts retain the capacity for selfish evolution. 相似文献
18.
The aim of this study is to examine the expression of cytoplasmic incompatibility and investigate the distribution and population frequencies of Wolbachia pipientis strains in Drosophila simulans. Nucleotide sequence data from 16S rDNA and a Wolbachia surface protein coding sequence and cytoplasmic incompatibility assays identify four distinct Wolbachia strains: wHa, wRi, wMa, and wAu. The levels of cytoplasmic incompatibility between six lines carrying these strains of bacteria and three control lines without bacteria are characterized. Flies infected with wHa and wRi are bidirectionally incompatible, and males that carry either strain can only successfully produce normal numbers of offspring with females carrying the same bacterial strain. Males infected with wAu do not express incompatibility. Males infected with the wMa strain express intermediate incompatibility when mated to females with no bacteria and no incompatibility with females with any other Wolbachia strain. We conduct polymerase chain reaction/restriction fragment length polymorphism assays to distinguish the strain of Wolbachia and the mitochondrial haplotype to survey populations for each type and associations between them. Drosophila simulans is known to have three major mitochondrial haplotypes (siI, sill, and siIII) and two subtypes (siIIA and siIIB). All infected lines of the sil haplotype carry wHa, wNo, or both; wMa and wNo are closely related and it is not clear whether they are distinct strains or variants of the same strain. Infected lines with the silIA haplotype harbor wRi and the siIIB haplotype carries wAu. The wMa infection is found in siIII haplotype lines. The phenotypic expression of cytoplasmic incompatibility and its relation to between-population differences in frequencies of Wolbachia infection are discussed. 相似文献
19.
Julie L. Lockwood 《Biological invasions》2006,8(3):449-457
Although recent research has shown that non-indigenous species often increase local-scale species richness, few have documented how such increases translate into compositional changes across biological scales. In particular, transformations of biodiversity patterns may be acute within regions that are simultaneously extinction and invasion hotspots (i.e. double-hotspots), such as the Hawaiian Islands. Nevertheless, modification of diversity relationships in such places are rarely quantified. Here, I utilize passerine non-indigenous species introductions and native species extinctions on Hawaii to quantitatively explore the changing relationship between within- (alpha), between- (beta), and across-island (gamma) diversity. My results indicate that, even after incorporating the enrichment effects of non-indigenous species invasions, across-island passerine diversity has dropped substantially. Nevertheless, within-island diversity has remained largely unchanged, or in some cases increased. Perhaps the more profound changes in diversity have come from the loss of between-island diversity. Because nearly all native Hawaiian passerines are extinct or near extinction, the current diversity relationships are inordinately influenced by patterns in the transportation and establishment of non-indigenous birds. These human-induced ‘dispersal’ patterns are markedly different from natural ones. In addition, these dispersal patterns may be unique to vagile species such as birds, thus indicating that transformations of diversity within other groups (e.g. plants or freshwater fishes) currently inhabiting Hawaii may differ. These results suggest the need to explore how alteration of diversity relationships translate into the loss of ecosystem services, or other valued components of biodiversity. 相似文献