首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entry into and progression through mitosis depends on phosphorylation and dephosphorylation of key substrates. In yeast, the nucleolar phosphatase Cdc14 is pivotal for exit from mitosis counteracting Cdk1-dependent phosphorylations. Whether hCdc14B, the human homolog of yeast Cdc14, plays a similar function in mitosis is not yet known. Here we show that hCdc14B serves a critical role in regulating progression through mitosis, which is distinct from hCdc14A. Unscheduled overexpression of hCdc14B delays activation of two master regulators of mitosis, Cdc25 and Cdk1, and slows down entry into mitosis. Depletion of hCdc14B by RNAi prevents timely inactivation of Cdk1/cyclin B and dephosphorylation of Cdc25, leading to severe mitotic defects, such as delay of metaphase/anaphase transition, lagging chromosomes, multipolar spindles and binucleation. The results demonstrate that hCdc14B-dependent modulation of Cdc25 phosphatase and Cdk1/cyclin B activity is tightly linked to correct chromosome segregation and bipolar spindle formation, processes that are required for proper progression through mitosis and maintenance of genomic stability.  相似文献   

2.
Activation of cyclin B1–cyclin-dependent kinase 1 (Cdk1), triggered by a positive feedback loop at the end of G2, is the key event that initiates mitotic entry. In metaphase, anaphase-promoting complex/cyclosome–dependent destruction of cyclin B1 inactivates Cdk1 again, allowing mitotic exit and cell division. Several models describe Cdk1 activation kinetics in mitosis, but experimental data on how the activation proceeds in mitotic cells have largely been lacking. We use a novel approach to determine the temporal development of cyclin B1–Cdk1 activity in single cells. By quantifying both dephosphorylation of Cdk1 and phosphorylation of the Cdk1 target anaphase-promoting complex/cyclosome 3, we disclose how cyclin B1–Cdk1 continues to be activated after centrosome separation. Importantly, we discovered that cytoplasmic cyclin B1–Cdk1 activity can be maintained even when cyclin B1 translocates to the nucleus in prophase. These experimental data are fitted into a model describing cyclin B1–Cdk1 activation in human cells, revealing a striking resemblance to a bistable circuit. In line with the observed kinetics, cyclin B1–Cdk1 levels required to enter mitosis are lower than the amount of cyclin B1–Cdk1 needed for mitotic progression. We propose that gradually increasing cyclin B1–Cdk1 activity after centrosome separation is critical to coordinate mitotic progression.  相似文献   

3.
BACKGROUND: The mitotic kinases, Cdk1, Aurora A/B, and Polo-like kinase 1 (Plk1) have been characterized extensively to further understanding of mitotic mechanisms and as potential targets for cancer therapy. Cdk1 and Aurora kinase studies have been facilitated by small-molecule inhibitors, but few if any potent Plk1 inhibitors have been identified. RESULTS: We describe the cellular effects of a novel compound, BI 2536, a potent and selective inhibitor of Plk1. The fact that BI 2536 blocks Plk1 activity fully and instantaneously enabled us to study controversial and unknown functions of Plk1. Cells treated with BI 2536 are delayed in prophase but eventually import Cdk1-cyclin B into the nucleus, enter prometaphase, and degrade cyclin A, although BI 2536 prevents degradation of the APC/C inhibitor Emi1. BI 2536-treated cells lack prophase microtubule asters and thus polymerize mitotic microtubules only after nuclear-envelope breakdown and form monopolar spindles that do not stably attach to kinetochores. Mad2 accumulates at kinetochores, and cells arrest with an activated spindle-assembly checkpoint. BI 2536 prevents Plk1's enrichment at kinetochores and centrosomes, and when added to metaphase cells, it induces detachment of microtubules from kinetochores and leads to spindle collapse. CONCLUSIONS: Our results suggest that Plk1's accumulation at centrosomes and kinetochores depends on its own activity and that this activity is required for maintaining centrosome and kinetochore function. Our data also show that Plk1 is not required for prophase entry, but delays transition to prometaphase, and that Emi1 destruction in prometaphase is not essential for APC/C-mediated cyclin A degradation.  相似文献   

4.
Mitotic entry and exit require activation and inactivation of the Cdk1-cyclin B kinase complex, respectively. The Cdc25 protein phosphatase family activates Cdk1-cyclin B at the G2/M transition by removing inhibitory phosphate groups. Cdc25 family members, held inactive during interphase, are activated during mitotic progression in an amplification loop involving Cdk1-cyclin B. While Cdc25 activation at the G2/M transition is required for the timely initiation of mitosis, recent evidence suggests that the inactivation of Cdc25 in late mitosis may play a role in supporting Cdk1-cyclin B inactivation. Here, we discuss the mechanisms of Cdc25 regulation and how they pertain to both mitotic entry and exit.  相似文献   

5.
Mitotic entry and exit require activation and inactivation of the Cdk1-cyclin B kinase complex, respectively. The Cdc25 protein phosphatase family activates Cdk1-cyclin B at the G2/M transition by removing inhibitory phosphate groups. Cdc25 family members, held inactive during interphase, are activated during mitotic progression in an amplification loop involving Cdk1-cyclin B. While Cdc25 activation at the G2/M transition is required for the timely initiation of mitosis, recent evidence suggests that the inactivation of Cdc25 in late mitosis may play a role in supporting Cdk1-cyclin B inactivation. Here, we discuss the mechanisms of Cdc25 regulation and how they pertain to both mitotic entry and exit.  相似文献   

6.
Activation of cyclin B1–cyclin-dependent kinase 1 (Cdk1), triggered by a positive feedback loop at the end of G2, is the key event that initiates mitotic entry. In metaphase, anaphase-promoting complex/cyclosome–dependent destruction of cyclin B1 inactivates Cdk1 again, allowing mitotic exit and cell division. Several models describe Cdk1 activation kinetics in mitosis, but experimental data on how the activation proceeds in mitotic cells have largely been lacking. We use a novel approach to determine the temporal development of cyclin B1–Cdk1 activity in single cells. By quantifying both dephosphorylation of Cdk1 and phosphorylation of the Cdk1 target anaphase-promoting complex/cyclosome 3, we disclose how cyclin B1–Cdk1 continues to be activated after centrosome separation. Importantly, we discovered that cytoplasmic cyclin B1–Cdk1 activity can be maintained even when cyclin B1 translocates to the nucleus in prophase. These experimental data are fitted into a model describing cyclin B1–Cdk1 activation in human cells, revealing a striking resemblance to a bistable circuit. In line with the observed kinetics, cyclin B1–Cdk1 levels required to enter mitosis are lower than the amount of cyclin B1–Cdk1 needed for mitotic progression. We propose that gradually increasing cyclin B1–Cdk1 activity after centrosome separation is critical to coordinate mitotic progression.  相似文献   

7.
S Sigrist  H Jacobs  R Stratmann    C F Lehner 《The EMBO journal》1995,14(19):4827-4838
While entry into mitosis is triggered by activation of cdc2 kinase, exit from mitosis requires inactivation of this kinase. Inactivation results from proteolytic degradation of the regulatory cyclin subunits during mitosis. At least three different cyclin types, cyclins A, B and B3, associate with cdc2 kinase in higher eukaryotes and are sequentially degraded in mitosis. We show here that mutations in the Drosophila gene fizzy (fzy) block the mitotic degradation of these cyclins. Moreover, expression of mutant cyclins (delta cyclins) lacking the destruction box motif required for mitotic degradation affects mitotic progression at distinct stages. Deltacyclin A results in a delay in metaphase, deltacyclin B in an early anaphase arrest and deltacyclin B3 in a late anaphase arrest, suggesting that mitotic progression beyond metaphase is ordered by the sequential degradation of these different cyclins. Coexpression of deltacyclins A, B and B3 allows a delayed separation of sister chromosomes, but interferes wit chromosome segregation to the poles. Mutations in fzy block both sister chromosome separation and segregation, indicating that fzy plays a crucial role in the metaphase/anaphase transition.  相似文献   

8.
Faithful transmission of chromosomes during eukaryotic cell division requires sister chromatids to be paired from their generation in S phase until their separation in M phase. Cohesion is mediated by the cohesin complex, whose Smc1, Smc3 and Scc1 subunits form a tripartite ring that entraps both DNA double strands. Whereas centromeric cohesin is removed in late metaphase by Scc1 cleavage, metazoan cohesin at chromosome arms is displaced already in prophase by proteolysis‐independent signalling. Which of the three gates is triggered by the prophase pathway to open has remained enigmatic. Here, we show that displacement of human cohesin from early mitotic chromosomes requires dissociation of Smc3 from Scc1 but no opening of the other two gates. In contrast, loading of human cohesin onto chromatin in telophase occurs through the Smc1–Smc3 hinge. We propose that the use of differently regulated gates for loading and release facilitates unidirectionality of DNA's entry into and exit from the cohesin ring.  相似文献   

9.
Paulson JR 《Chromosoma》2007,116(2):215-225
It is well known that inactivation of Cdk1/Cyclin B is required for cells to exit mitosis. The work reported here tests the hypothesis that Cdk1/Cyclin B inactivation is not only necessary but also sufficient to induce mitotic exit and reestablishment of the interphase state. This hypothesis predicts that inactivation of Cdk1 in metaphase-arrested cells will induce the M to G1-phase transition. It is shown that when mouse FT210 cells (in which Cdk1 is temperature-sensitive) are arrested in metaphase and then shifted to their non-permissive temperature, they rapidly exit mitosis as evidenced by reassembly of interphase nuclei, decondensation of chromosomes, and dephosphorylation of histones H1 and H3. The resulting interphase cells are functionally normal as judged by their ability to progress through another cell cycle. However, they have double the normal number of chromosomes because they previously bypassed anaphase, chromosome segregation, and cytokinesis. These results, taken together with other observations in the literature, strongly suggest that in mammalian cells, inactivation of Cdk1/cyclin B is the trigger for mitotic exit and reestablishment of the interphase state.  相似文献   

10.
Ross KE  Cohen-Fix O 《Genetics》2003,165(2):489-503
Cdh1p, a substrate specificity factor for the cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C), promotes exit from mitosis by directing the degradation of a number of proteins, including the mitotic cyclins. Here we present evidence that Cdh1p activity at the M/G(1) transition is important not only for mitotic exit but also for high-fidelity chromosome segregation in the subsequent cell cycle. CDH1 showed genetic interactions with MAD2 and PDS1, genes encoding components of the mitotic spindle assembly checkpoint that acts at metaphase to prevent premature chromosome segregation. Unlike cdh1delta and mad2delta single mutants, the mad2delta cdh1delta double mutant grew slowly and exhibited high rates of chromosome and plasmid loss. Simultaneous deletion of PDS1 and CDH1 caused extensive chromosome missegregation and cell death. Our data suggest that at least part of the chromosome loss can be attributed to kinetochore/spindle problems. Our data further suggest that Cdh1p and Sic1p, a Cdc28p/Clb inhibitor, have overlapping as well as nonoverlapping roles in ensuring proper chromosome segregation. The severe growth defects of both mad2delta cdh1delta and pds1delta cdh1dDelta strains were rescued by overexpressing Swe1p, a G(2)/M inhibitor of the cyclin-dependent kinase, Cdc28p/Clb. We propose that the failure to degrade cyclins at the end of mitosis leaves cdh1delta mutant strains with abnormal Cdc28p/Clb activity that interferes with proper chromosome segregation.  相似文献   

11.
The spindle and kinetochore–associated (Ska) protein complex is a heterotrimeric complex required for timely anaphase onset. The major phenotypes seen after small interfering RNA–mediated depletion of Ska are transient alignment defects followed by metaphase arrest that ultimately results in cohesion fatigue. We find that cells depleted of Ska3 arrest at metaphase with only partial degradation of cyclin B1 and securin. In cells arrested with microtubule drugs, Ska3-depleted cells exhibit slower mitotic exit when the spindle checkpoint is silenced by inhibition of the checkpoint kinase, Mps1, or when cells are forced to exit mitosis downstream of checkpoint silencing by inactivation of Cdk1. These results suggest that in addition to a role in fostering kinetochore–microtubule attachment and chromosome alignment, the Ska complex has functions in promoting anaphase onset. We find that both Ska3 and microtubules promote chromosome association of the anaphase-promoting complex/cyclosome (APC/C). Chromosome-bound APC/C shows significantly stronger ubiquitylation activity than cytoplasmic APC/C. Forced localization of Ska complex to kinetochores, independent of microtubules, results in enhanced accumulation of APC/C on chromosomes and accelerated cyclin B1 degradation during induced mitotic exit. We propose that a Ska-microtubule-kinetochore association promotes APC/C localization to chromosomes, thereby enhancing anaphase onset and mitotic exit.  相似文献   

12.
The fidelity of chromosome segregation depends on proper regulation of mitotic spindle behaviour. In anaphase, spindle stability is promoted by the dephosphorylation of cyclin-dependent kinase (Cdk) substrates, which results from Cdk inactivation and phosphatase activation. Few of the critical Cdk targets have been identified. Here, we identify the budding-yeast protein Fin1 (ref. 7) as a spindle-stabilizing protein whose activity is strictly limited to anaphase by changes in its phosphorylation state and rate of degradation. Phosphorylation of Fin1 from S phase to metaphase, by the cyclin-dependent kinase Clb5-Cdk1, inhibits Fin1 association with the spindle. In anaphase, when Clb5-Cdk1 is inactivated, Fin1 is dephosphorylated by the phosphatase Cdc14. Fin1 dephosphorylation targets it to the poles and microtubules of the elongating spindle, where it contributes to spindle integrity. A non-phosphorylatable Fin1 mutant localizes to the spindle before anaphase and impairs efficient chromosome segregation. As cells complete mitosis and disassemble the spindle, the ubiqutin ligase APC(Cdh1) targets Fin1 for destruction. Our studies illustrate how phosphorylation-dependent changes in the behaviour of Cdk1 substrates influence complex mitotic processes.  相似文献   

13.
14.
Entry and progression through mitosis has traditionally been linked directly to the activity of cyclin-dependent kinase 1 (Cdk1). In this study we utilized low doses of the Cdk1-specific inhibitor, RO3306 from early G2 phase onwards. Addition of low doses of RO3306 in G2 phase induced minor chromosome congression and segregation defects. In contrast, mild doses of RO3306 during G2 phase resulted in cells entering an aberrant mitosis, with cells fragmenting centrosomes and failing to fully disassemble the nuclear envelope. Cells often underwent cytokinesis and metaphase simultaneously, despite the presence of an active spindle assembly checkpoint, which prevented degradation of cyclin B1 and securin, resulting in the random partitioning of whole chromosomes. This highly aberrant mitosis produced a significant increase in the proportion of viable polyploid cells present up to 3 days post-treatment. Furthermore, cells treated with medium doses of RO3306 were only able to reach the threshold of Cdk1 substrate phosphorylation required to initiate nuclear envelope breakdown, but failed to reach the levels of phosphorylation required to correctly complete pro-metaphase. Treatment with low doses of Okadaic acid, which primarily inhibits PP2A, rescued the mitotic defects and increased the number of cells that completed a normal mitosis. This supports the current model that PP2A is the primary phosphatase that counterbalances the activity of Cdk1 during mitosis. Taken together these results show that continuous and subtle disruption of Cdk1 activity from G2 phase onwards has deleterious consequences on mitotic progression by disrupting the balance between Cdk1 and PP2A.  相似文献   

15.

Background

The spindle assembly checkpoint (SAC) inhibits anaphase progression in the presence of insufficient kinetochore-microtubule attachments, but cells can eventually override mitotic arrest by a process known as mitotic slippage or adaptation. This is a problem for cancer chemotherapy using microtubule poisons.

Results

Here we describe mitotic slippage in yeast bub2?? mutant cells that are defective in the repression of precocious telophase onset (mitotic exit). Precocious activation of anaphase promoting complex/cyclosome (APC/C)-Cdh1 caused mitotic slippage in the presence of nocodazole, while the SAC was still active. APC/C-Cdh1, but not APC/C-Cdc20, triggered anaphase progression (securin degradation, separase-mediated cohesin cleavage, sister-chromatid separation and chromosome missegregation), in addition to telophase onset (mitotic exit), during mitotic slippage. This demonstrates that an inhibitory system not only of APC/C-Cdc20 but also of APC/C-Cdh1 is critical for accurate chromosome segregation in the presence of insufficient kinetochore-microtubule attachments.

Conclusions

The sequential activation of APC/C-Cdc20 to APC/C-Cdh1 during mitosis is central to accurate mitosis. Precocious activation of APC/C-Cdh1 in metaphase (pre-anaphase) causes mitotic slippage in SAC-activated cells. For the prevention of mitotic slippage, concomitant inhibition of APC/C-Cdh1 may be effective for tumor therapy with mitotic spindle poisons in humans.  相似文献   

16.
The metaphase to anaphase transition is a critical stage of the eukaryotic cell cycle, and, thus, it is highly regulated. Errors during this transition can lead to chromosome segregation defects and death of the organism. In genetic screens for temperature-sensitive maternal effect embryonic lethal (Mel) mutants, we have identified 32 mutants in the nematode Caenorhabditis elegans in which fertilized embryos arrest as one-cell embryos. In these mutant embryos, the oocyte chromosomes arrest in metaphase of meiosis I without transitioning to anaphase or producing polar bodies. An additional block in M phase exit is evidenced by the failure to form pronuclei and the persistence of phosphohistone H3 and MPM-2 antibody staining. Spermatocyte meiosis is also perturbed; primary spermatocytes arrest in metaphase of meiosis I and fail to produce secondary spermatocytes. Analogous mitotic defects cause M phase delays in mitotic germline proliferation. We have named this class of mutants "mat" for metaphase to anaphase transition defective. These mutants, representing six different complementation groups, all map near genes that encode subunits of the anaphase promoting complex or cyclosome, and, here, we show that one of the genes, emb-27, encodes the C. elegans CDC16 ortholog.  相似文献   

17.
Chk1, one of the critical transducers in DNA damage/replication checkpoints, prevents entry into mitosis through inhibition of Cdk1 activity. However, it has remained unclear how this inhibition is cancelled at the G2/M transition. We reported recently that Chk1 is phosphorylated at Ser286 and Ser301 by Cdk1 during mitosis. Here, we show that mitotic Chk1 phosphorylation is accompanied by Chk1 translocation from the nucleus to the cytoplasm in prophase. This translocation advanced in accordance with prophase progression and was regulated by Crm-1-dependent nuclear export. Exogenous Chk1 mutated at Ser286 and Ser301 to Ala (S286A/S301A) was observed mainly in the nuclei of prophase cells, although such nuclear accumulation was hardly observed in wild-type Chk1. Induction of S286A/S301A resulted in the delay of mitotic entry. Biochemical analyses using immunoprecipitated cyclin B1-Cdk1 complexes revealed S286A/S301A expression to block the adequate activation of Cdk1. In support of this, S286A/S301A expression retained Wee1 at higher levels and Cdk1-induced phosphorylation of cyclin B1 and vimentin at lower levels. A kinase-dead version of S286A/S301A also localized predominantly in the nucleus but lost the ability to delay mitotic entry. These results indicate that Chk1 phosphorylation by Cdk1 participates in cytoplasmic sequestration of Chk1 activity, which releases Cdk1 inhibition in the nucleus and promotes mitotic entry.  相似文献   

18.
U Surana  A Amon  C Dowzer  J McGrew  B Byers    K Nasmyth 《The EMBO journal》1993,12(5):1969-1978
It is widely assumed that degradation of mitotic cyclins causes a decrease in mitotic cdc2/CDC28 kinase activity and thereby triggers the metaphase to anaphase transition. Two observations made on the budding yeast Saccharomyces cerevisiae are inconsistent with this scenario: (i) anaphase occurs in the presence of high levels of kinase in cdc15 mutants and (ii) overproduction of a B-type mitotic cyclin causes arrest not in metaphase as previously reported but in telophase. Kinase destruction is therefore implicated in the exit from mitosis rather than the entry into anaphase. The behaviour of esp1 mutants shows in addition that kinase destruction can occur in the absence of anaphase completion. The execution of anaphase and the destruction of CDC28 kinase activity therefore appear to take place independently of one another.  相似文献   

19.
The CDC25 phosphatases play an essential role in the spatial and temporal regulation of the control of entry into mitosis. These enzymes dephosphorylate and activate the CDK-cyclin complexes, in particular CDK1-cyclin B1, the master regulator of mitosis. Three CDC25 genes in exist in humans (CDC25A, CDC25B and CDC25C), and the original model of their function proposed that they acted sequentially at discrete cell cycle transitions, i.e., that CDC25A was dedicated to the activation of the G1/S progression-associated CDKs, CDC25B controlled early prophase events, while CDC25C was thought to achieve the full activation of CDK1-cyclin B1 at entry into mitosis. Indeed, the situation appears much more complicated than this, and current evidence shows that all three CDC25 phosphatases act at a variety of mitotic stages, with and considerable experimental evidence to indicate that all three are involved in orchestrating cell cycle progression in mitosis.1 Previous work has led to the proposal that CDC25B acts as the starter of mitosis. Additionally, a number of recent studies have shown that CDC25B also localizes to the centrosome where its activating role on CDK-cyclin complexes appears to be regulated by multiple activatory and inhibitory kinases.2-5 As such, it has been proposed that CDC25B might act as a central centrosomal integrator and a trigger for the initial events that set up the sequence of events leading to mitosis.6 As a target of the first small pool of activated CDK1-cyclin B1 that translocates to the nucleus, CDC25C was thought to subsequently be responsible for the massive activation of the nuclear pool of CDK1-cyclin B1 that occurs at entry into mitosis. A report from the group headed by May Morris presented in this issue of Cell Cycle (Bonnet et al., pp. 1990–7) provides new insight into the dynamics of these events and in the understanding of the involvement of both CDC25B and CDC25C in the earliest stages of the G2/M transition. Bonnet and collaborators show for the first time, as has long been suspected but until now never observed, the localization of a fraction of CDC25C at the centrosome during interphase. This centrosomal localization occurs from S-phase onward and is also present during mitosis. Using FRAP analysis, their study elegantly shows that this centrosomal population of CDC25C is highly dynamic. Furthermore, the authors show that mutations of CDC25C that impair its catalytic activity or its binding to its CDK-cyclin substrates promote its centrosomal accumulation, thus suggesting an active role in the dephosphorylation and activation of CDK-cyclins at this location. Together with previous reports showing that the activity of CDC25C is amplified following its mitotic phosphorylation by CDK1-cyclin B1 while the activity of CDC25B is not,7 these new findings lead to the proposition of an alternative regulatory model for the control of the G2/M transition. In this model, the CDK1-cyclin B1 complex is activated at the centrosomal level both by the initial action of CDC25B (as has already been suggested8) as well as by the centrosomal pool of activated CDC25C that subsequently amplifies the process through its own phosphorylation and activation (Fig. 1). While CDC25B can be considered as a “starter”, CDC25C plays the role of the “gas pedal” that speeds up entry into mitosis by amplifying the signaling cascade from the centrosome and finally increasing nuclear levels. This model is certainly too simplistic and does not integrate many major issues that remain to be investigated. Among these unsolved questions is the role that the multiple splice variants of the CDC25 phosphatases might play. There are at least five variants for both CDC25B and CDC25C whose specific regulation and roles in the dephosphorylation of individual CDK-cyclins substrates is still unknown.5 Likely related to this question is the issue of the presence of both CDC25B and CDC25C until late stages of mitosis. Why is CDC25C associated with the centrosome when, according to the dogma, the entire pool of CDK1-cyclin B1 has been fully activated? An attractive hypothesis is to speculate that the CDC25 phosphatases might continue to play discrete roles in the dephosphorylation and the activation of sub-populations of CDK-cyclins throughout the entire process of mitosis to ensure a fine tuning of the kinase activities that are involved in the many architectural and functional aspects of the mitotic figure. Centrosomes are made up of numerous proteins whose amino acid sequence suggests a coiled-coil tertiary structure. Increasing evidence indicates that this molecular structure may be well-designed for the organization of multiprotein scaffolds that can anchor a diversity of activities ranging from protein complexes involved in microtubule nucleation to multicomponent pathways for cellular regulation.9 By physically linking components of a common pathway, molecular scaffolds can increase the local concentration of components, limit nonspecific interactions, and provide spatial control for regulatory pathways by positioning by positioning them at specific sites in proximity to downstream targets or upstream modulators. On the basis of the increasing number of regulatory molecules anchored at the centrosome, it is likely that this organelle serves as a centralized control center for regulating a diversity of cellular activities. Recent studies have provided some of the first functional links between centrosomes and regulatory networks in cell cycle transitions from G1 to S-phase, G2 to M-phase and metaphase to anaphase. The findings by Bonnet et al. support this line of evidence.

References

Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 2006; 18:185-91. Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, Dozier C, Mirey G, Bouche J, Theis-Febvre N, Schmitt E, Monsarrat B, Prigent C, Ducommun B. Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2/M transition. J Cell Science 2004; 117:2523-31. Schmitt E, Boutros R, Froment C, Monsarrat B, Ducommun B, Dozier C. CHK1 phosphorylates CDC25B during the cell cycle in the absence of DNA damage. J Cell Sci 2006; 119:4269-75. Boutros R, Ducommun B. Asymmetric localization of the CDC25B phosphatase to the mother centrosome during interphase. Cell Cycle 2008; 7:401-6. Boutros R, Lobjois V, Ducommun B. CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 2007; 7:495-507. Lindqvist A, Kallstrom H, Lundgren A, Barsoum E, Rosenthal CK. Cdc25B cooperates with Cdc25A to induce mitosis but has a unique role in activating cyclin B1-Cdk1 at the centrosome. J Cell Biol 2005; 171:35-45. Baldin V, Pelpel K, Cazales M, Cans C, Ducommun B. Nuclear Localization of CDC25B1 and Serine 146 Integrity Are Required for Induction of Mitosis. J Biol Chem 2002; 277:35176-82. Jackman M, Lindon C, Nigg EA, Pines J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nat Cell Biol 2003; 5:143-8. Kramer A, Lukas J, Bartek J. Checking out the centrosome. Cell Cycle 2004; 3:1390-3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号