首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Epithelial-mesenchymal transition (EMT) is a developmental biological process that is hijacked during tumor progression. Cadherin switching, which disrupts adherens junctions and alters cadherin-associated signaling pathways, is common during EMT. In many tumors, substantial extracellular matrix (ECM) is deposited. Collagen is the most abundant ECM constituent and it mediates specific signaling pathways by binding to integrins and discoidin domain receptors (DDRs). The interaction of the collagen receptors results in activation of signaling pathways that promote tumor progression including an induction of the cadherin switching. DDR inhibitors have demonstrated anticancer therapeutic efficacy preclinically by inhibiting the collagen signaling. Understanding how collagen signaling impacts cellular processes including EMT and cadherin switching is of great interest especially given the strong interest in stromal targeted therapies for desmoplastic cancers.  相似文献   

3.
The use of 3D extracellular matrix (ECM) microenvironments to deliver growth-inductive signals for tissue repair and regeneration requires an understanding of the mechanisms of cell–ECM signaling. Recently, hyaluronic acid (HA) has been incorporated in collagen matrices in an attempt to recreate tissue specific microenvironments. However, it is not clear how HA alters biophysical properties (e.g. fibril microstructure and mechanical behavior) of collagen matrices or what impact these properties have on cell behavior. The present study determined the effects of varying high molecular weight HA concentration on 1) the assembly kinetics, fibril microstructure, and viscoelastic properties of 3D type I collagen matrices and 2) the response of human dermal fibroblasts, in terms of morphology, F-actin organization, contraction, and proliferation within the matrices. Results showed increasing HA concentration up to 1 mg/ml (HA:collagen ratio of 1:2) did not significantly alter fibril microstructure, but did significantly alter viscoelastic properties, specifically decreasing shear storage modulus and increasing compressive resistance. Interestingly, varied HA concentration did not significantly affect any of the measured fibroblast behaviors. These results show that HA-induced effects on collagen matrix viscoelastic properties result primarily from modulation of the interstitial fluid with no significant change to the fibril microstructure. Furthermore, the resulting biophysical changes to the matrix are not sufficient to modulate the cell–ECM mechanical force balance or proliferation of resident fibroblasts. These results provide new insight into the mechanisms by which cells sense and respond to microenvironmental cues and the use of HA in collagen-based biomaterials for tissue engineering.  相似文献   

4.
《Cellular signalling》2014,26(9):2008-2015
Integrin-mediated attachment to extracellular matrix (ECM) is crucial for cancer progression. Malignant T cells such as acute lymphoblastic leukemia (T-ALL) express β1 integrins, which mediate their interactions with ECM. However, the role of these interactions in T-ALL malignancy is still poorly explored. In the present study, we investigated the effect of collagen; an abundant ECM, on T-ALL survival and migration. We found that collagen through α2β1 integrin promotes the survival of T-ALL cell lines in the absence of growth factors. T-ALL cell survival by collagen is associated with reduced caspase activation and maintenance of Mcl-1 levels. Collagen activated both ERK and p38 MAPKs but only MAPK/ERK was required for collagen-induced T-ALL survival. However, we found that α2β1 integrin promoted T-ALL migration via both ERK and p38. Together these data indicate that α2β1 integrin signaling can represent an important signaling pathway in T-ALL pathogenesis and suggest that its blockade could be beneficial in T-ALL treatment.  相似文献   

5.
Integrin-mediated adhesion of epithelial cells to extracellular matrix (ECM) proteins induces prolonged tyrosine phosphorylation and partial activation of epidermal growth factor receptor (EGFR) in an integrin-dependent and EGFR ligand-independent manner. Integrin-mediated activation of EGFR in epithelial cells is required for multiple signal transduction events previously shown to be induced by cell adhesion to matrix proteins, including tyrosine phosphorylation of Shc, Cbl, and phospholipase Cgamma, and activation of the Ras/Erk and phosphatidylinositol 3'-kinase/Akt signaling pathways. In contrast, activation of focal adhesion kinase, Src, and protein kinase C, adhesion to matrix proteins, cell spreading, migration, and actin cytoskeletal rearrangements are induced independently of EGFR kinase activity. The ability of integrins to induce the activation of EGFR and its subsequent regulation of Erk and Akt activation permitted adhesion-dependent induction of cyclin D1 and p21, Rb phosphorylation, and activation of cdk4 in epithelial cells in the absence of exogenous growth factors. Adhesion of epithelial cells to the ECM failed to efficiently induce degradation of p27, to induce cdk2 activity, or to induce Myc and cyclin A synthesis; subsequently, cells did not progress into S phase. Treatment of ECM-adherent cells with EGF, or overexpression of EGFR or Myc, resulted in restoration of late-G(1) cell cycle events and progression into S phase. These results indicate that partial activation of EGFR by integrin receptors plays an important role in mediating events triggered by epithelial cell attachment to ECM; EGFR is necessary for activation of multiple integrin-induced signaling enzymes and sufficient for early events in G(1) cell cycle progression. Furthermore, these findings suggest that EGFR or Myc overexpression may provoke ligand-independent proliferation in matrix-attached cells in vivo and could contribute to carcinoma development.  相似文献   

6.
ABSTRACT

Collagen is the most abundant component of tumor extracellular matrix (ECM). ECM collagens are known to directly interact with the tumor cells via cell surface receptor and play crucial role in tumor cell survival and promote tumor progression. Collagen receptor DDR1 is a member of receptor tyrosine kinase (RTK) family with a unique motif in the extracellular domain resembling Dictyostelium discoideum protein discoidin-I. DDR1 displays delayed and sustained activation upon interaction with collagen and recent findings have demonstrated that DDR1-collagen signaling play important role in cancer progression. In this review, we discuss the current knowledge on the role of DDR1 in cancer metastasis and possibility of a potential therapeutic approach of DDR1 targeted therapy in cancer.  相似文献   

7.
Cho MK  Lee GH  Park EY  Kim SG 《Tissue & cell》2004,36(5):293-305
Unbalanced accumulation of fibers in extracellular matrix (ECM) results from attachment and activation of hepatic stellate cells (HSCs) during chronic liver diseases, in which the content of hyaluronic acid (HA), a glycosaminoglycan, in ECM changes. No information is available on the effect of HA on adhesion and activation of HSCs although that of collagen (Col) on HSCs was extensively studied. This study investigated the effects of HA with or without Col on adhesion of HSCs or the rate of DNA synthesis. Attachment of primary cultured HSCs was microscopically monitored in the plate simultaneously coated with HA or other ECM components. HA inhibited adhesion of quiescent HSCs at least up to 7 days after seeding, whereas HSCs were adherent to plastic or type I collagen (Col-I), type III collagen (Col-III), type IV collagen (Col-IV) or fibronectin. Both microscopy and alpha-smooth muscle actin immunocytochemistry revealed that the number of HSCs, which had been re-seeded after 15 days of culture, attached to HA-coated area was remarkably lower compared to that of HSCs on Col-I or plastic. Incorporation of HA into Col-I prevented adhesion of activated HSCs to matrix film. The number of HSCs adherent to HA at early times after seeding was minimal and significantly lower than that of the cells adherent to plastic. In contrast, either Col-I or Col-IV increased the number of adherent cells. Attachment of HSCs to plastic was inhibited by soluble HA in culture medium. CD44, the cell surface receptor to which HA binds, was immunochemically detected in HSCs. Adhesion of HSCs to plastic, HA or Col-I was not changed by anti-CD44 antibody. Either HA or Col increased the basal or platelet-derived growth factor-inducible rate of thymidine incorporation into DNA in HSCs. In conclusion, HA inhibits adhesion of quiescent or activated HSCs in spite of its stimulation of DNA synthesis, whereas Col increases HSC attachment and DNA synthesis, and inhibition of HSC adhesion by HA does not involve CD44.  相似文献   

8.
Detachment of epithelial cells from the extracellular matrix (ECM) results in apoptosis, a phenomenon often referred to as anoikis. Acquisition of anoikis resistance is now thought to be a prerequisite for the progression of carcinomas. Colorectal cancer cells frequently secrete epidermal growth factor receptor (EGFR) ligands, which are known to have anti-apoptotic activity. However, whether these ligands have the ability to inhibit anoikis of intestinal epithelial cells is unclear, since at least in some cell types efficient EGFR signaling requires cell-ECM adhesion. Here we report that transforming growth factor-alpha (TGF-alpha), an EGFR ligand that is frequently secreted by colorectal cancer cells, strongly inhibits anoikis of the non-malignant rat intestinal epithelial cell lines, IEC-18 and RIE-1. TGF-alpha exerts its anti-anoikis effect by preventing detachment-induced inhibition of c-Src kinase activity. We also show that Fas activation, a molecular event known to play a critical role in anoikis, is not suppressed by TGF-alpha. On the other hand, this growth factor strongly inhibits the detachment-induced down-regulation of Bcl-X(L), another change that is involved in the induction of anoikis. We further demonstrate that this inhibition occurs in a c-Src-dependent manner. We conclude that TGF-alpha has the ability to suppress anoikis of intestinal epithelial cells, at least in part, by reverting the loss of c-Src activity and Bcl-X(L) expression induced by detachment from the ECM.  相似文献   

9.
Fibrosis is induced by the excessive and abnormal deposition of extracellular matrix (ECM) with various growth factors in tissues. Transforming growth factor-β1 (TGF-β1), the growth factor involved in fibrosis, modulates ECM synthesis and accumulation. TGF-β1 enhances the production of stimulators of ECM synthesis such as plasminogen activator inhibitor type 1 (PAI-1). As such, PAI-1 expression directly influences the proteolysis, invasion, and accumulation of ECM. It was shown in this study that ascochlorin, a prenylpenl antiobiotic, prevents the expression of profibrotic factors, such as PAI-1 and collagen type I, and that the TGF-β1-induced PAI-1 promoter activity is inhibited by ascochlorin. Ascochlorin abolishes the phosphorylation of the EGFR-MEK-ERK signaling pathway to regulate the TGF-β1-induced expression of PAI-1 without the inhibition of TβRII phosphorylation. Furthermore, the MEK inhibitor and EGFR siRNA block PAI-1 expression, and the Raf-1, MEK, and ERK signaling pathways for the regulation of PAI-1 expression. Ascochlorin suppresses the matrix metalloproteinases (MMPs) activity to activate the heparin-binding EGF-like growth factor (HB-EGF), to induce the phosphorylation of EGFR, and the MMPs inhibitor suppresses EGFR phosphorylation and the PAI-1 mRNA levels. These results suggest that ascochlorin prevents the expression of PAI-1 via the inhibition of an EGFR-dependent signal transduction pathway activated by MMPs.  相似文献   

10.
Cancer progression is mediated by complex epigenetic, protein and structural influences. Critical among them are the biochemical, mechanical and architectural properties of the extracellular matrix (ECM). In recognition of the ECM's important role, cancer biologists have repurposed matrix mimetic culture systems first widely used by tissue engineers as new tools for in vitro study of tumor models. In this review we discuss the pathological changes in tumor ECM, the limitations of 2D culture on both traditional and polyacrylamide hydrogel surfaces in modeling these characteristics and advances in both naturally derived and synthetic scaffolds to facilitate more complex and controllable 3D cancer cell culture. Studies using naturally derived matrix materials like Matrigel and collagen have produced significant findings related to tumor morphogenesis and matrix invasion in a 3D environment and the mechanotransductive signaling that mediates key tumor–matrix interaction. However, lack of precise experimental control over important matrix factors in these matrices have increasingly led investigators to synthetic and semi-synthetic scaffolds that offer the engineering of specific ECM cues and the potential for more advanced experimental manipulations. Synthetic scaffolds composed of poly(ethylene glycol) (PEG), for example, facilitate highly biocompatible 3D culture, modular bioactive features like cell-mediated matrix degradation and complete independent control over matrix bioactivity and mechanics. Future work in PEG or similar reductionist synthetic matrix systems should enable the study of increasingly complex and dynamic tumor–ECM relationships in the hopes that accurate modeling of these relationships may reveal new cancer therapeutics targeting tumor progression and metastasis.  相似文献   

11.
12.
Fibroblasts stimulated by EGF within collagen matrices generate contraction forces that are likely of importance to cell migration and matrix compaction during wound healing. We have employed an in vitro fibroblast-embedded collagen matrix compaction assay to ascertain signaling pathway components downstream of EGFR activation leading to generation and transmission of contractile force. EGF compacts this floating collagen matrix to a similar extent as PDGF. We demonstrate that compaction requires EGFR kinase activity, yet is maximal in magnitude at intermediate EGF concentrations. This suggests that transmission of EGFR-induced contractile force to the matrix can be mitigated by consequent anti-adhesive effects of EGFR signaling in a dose-dependent manner. Treatment with pharmacological inhibitors demonstrated involvement of the signaling components extracellular signal-regulated kinase (ERK), Rho kinase, and myosin light chain kinase (MLCK) in the force generation and/or transmission process. Moreover, treatment with the pan-calpain inhibitor ALLN and isoform-specific downregulation of m-calpain (CAPN2) using RNA interference determined m-calpain to be a key component of the EGF-induced force response. ALLN treatment modulated the compaction response in a biphasic manner, enhancing matrix deformation to the greatest extent at intermediate concentrations. Our findings have thus identified key signals downstream of EGFR, which integrate in a complex manner to generate and transmit contractile forces to yield matrix deformation.  相似文献   

13.
Metastasis is a multi-step process which requires the conversion of polarized epithelial cells to mesenchymal cells, Epithelial–Mesenchymal Transition (EMT). EMT is essential during embryonic morphogenesis and has been implicated in the progression of primary tumors towards metastasis. Hypoxia is known to induce EMT; however the molecular mechanism is still poorly understood. Using the A431 epithelial cancer cell line, we show that cells grown under hypoxic conditions migrated faster than cells grown under normal oxygen environment. Cells grown under hypoxia showed reduced adhesion to the extracellular matrix (ECM) probably due to reduced number of Vinculin patches. Growth under hypoxic conditions also led to down regulation of E-cadherin and up regulation of vimentin expression. The increased motility of cells grown under hypoxia could be due to redistribution of Rac1 to the plasma membrane as opposed to increased expression of Rac1. EGF (Epidermal Growth Factor) is a known inducer of EMT and growth of A431 cells in the absence of oxygen led to increased expression of EGFR (EGF Receptor). Treatment of A431 cells with EGF led to reduced cell adhesion to ECM, increased cell motility and other EMT characteristics. Furthermore, this transition was blocked by the monoclonal antibody Cetuximab. Cetuximab also blocked the hypoxia-induced EMT suggesting that cell growth under hypoxic conditions led to activation of EGFR signaling and induction of EMT phenotype.  相似文献   

14.
Breast cancer is the most common malignancy among women worldwide. The role of epidermal growth factor receptor (EGFR) in many epithelial malignancies has been established, since it is dysregulated, overexpressed or mutated. Its overexpression has been associated with increased aggressiveness and metastatic potential in breast cancer. The well-established interplay between EGFR signaling pathway and estrogen receptors (ERs) as well as major extracellular matrix (ECM) mediators is crucial for regulating basic functional properties of breast cancer cells, including migration, proliferation, adhesion and invasion. EGFR activation leads to endocytosis of the receptor with implications in the regulation of downstream signaling effectors, the modulation of autophagy and cell survival. Therefore, EGFR is considered as a promising therapeutic target in breast cancer. Several anti-EGFR therapies (i.e. monoclonal antibodies and tyrosine kinase inhibitors) have been evaluated both in vitro and in vivo, making their way to clinical trials. However, the response rates of anti-EGFR therapies in the clinical trials is low mainly due to chemoresistance. Novel drug design, phytochemicals and microRNAs (miRNAs) are assessed as new therapeutic approaches against EGFR. The main goal of this review is to highlight the importance of targeting EGFR signaling pathway in terms of its crosstalk with ERs, the involvement of ECM effectors and epigenetics. Moreover, recent insights into the design of specialized delivery systems contributing in the development of novel diagnostic and therapeutic approaches in breast cancer are addressed.  相似文献   

15.
Asthma is a chronic inflammatory disease of the airways characterized by airway remodeling, which includes changes in the extracellular matrix (ECM). However the role of the ECM in mediating these changes is poorly understood. Hyaluronan (HA), a major component of the ECM, has been implicated in asthma as well as in many other biological processes. Our study investigates the processes involved in HA synthesis, deposition, localization and degradation during an acute and chronic murine model of ovalbumin (OVA)-induced allergic pulmonary inflammation. Mice were sensitized, challenged to OVA and sacrificed at various time points during an 8-week challenge protocol. Bronchoalveolar lavage (BAL) fluids, blood, and lung tissue were collected for study. RNA, HA, protein and histopathology were analyzed. Analyses of lung sections and BAL fluids revealed an early deposition and an increase in HA levels within 24 h of antigen exposure. HA levels peaked at day 8 in BAL, while inflammatory cell recovery peaked at day 6. Hyaluronan synthase (HAS)1 and HAS2 on RNA levels peaked within 2 h of antigen exposure, while hyaluronidase (HYAL)1 and HYAL2 on RNA levels decreased. Both inflammatory cell infiltrates and collagen deposition co-localized with HA deposition within the lungs. These data support a role for HA in the pathogenesis of inflammation and airway remodeling in a murine model of asthma. HA deposition appears largely due to up regulation of HAS1 and HAS2. In addition, HA appears to provide the scaffolding for inflammatory cell accumulation as well as for new collagen synthesis and deposition.  相似文献   

16.
Breast cancer patients diagnosed postpartum have poor prognosis. The postpartum mammary gland undergoes tissue regression to return to the pre-pregnant state. This involution is characterized by wound healing programs known to be tumor promotional in other contexts. Previous studies have shown that mammary extracellular matrix (ECM) from nulliparous rats has tumor suppressive attributes, while mammary ECM from involuting mammary glands is promotional. In models of pregnancy-associated breast cancer, non-steroidal anti-inflammatory drug (NSAID) treatment targeted to postpartum involution inhibits tumor progression, in part by suppressing COX-2 dependent collagen deposition. Because mammary ECM proteins are coordinately regulated, NSAID treatment is anticipated to result in additional protective changes in the mammary extracellular matrix. Here, systemic NSAID treatment was utilized during postpartum involution to reduce mammary COX-2 activity. ECM was isolated from actively involuting glands of rats treated with NSAIDs and compared to ECM isolated from control-involution and nulliparous rats in 3D cell culture and xenograft assays. Compositional changes in ECM between groups were identified by proteomics. In four distinct 3D culture assays, normal and transformed mammary epithelial cells plated in NSAID-involution ECM, phenocopied cells plated in ECM from nulliparous rats rather than ECM from control-involution rats. Tumor cells mixed with NSAID-involution ECM and injected orthotopically in mice formed smaller tumors than cells mixed with control-involution ECM. Proteomic analyses identified and 3D culture assays implicated the ECM protein tenascin-C as a potential mediator of tumor progression during involution that is decreased by NSAID treatment. In summary, NSAID treatment decreases tumor-promotional attributes of postpartum involution mammary ECM.  相似文献   

17.
Girish KS  Kemparaju K 《Life sciences》2007,80(21):1921-1943
Hyaluronan (HA) is a multifunctional high molecular weight polysaccharide found throughout the animal kingdom, especially in the extracellular matrix (ECM) of soft connective tissues. HA is thought to participate in many biological processes, and its level is markedly elevated during embryogenesis, cell migration, wound healing, malignant transformation, and tissue turnover. The enzymes that degrade HA, hyaluronidases (HAases) are expressed both in prokaryotes and eukaryotes. These enzymes are known to be involved in physiological and pathological processes ranging from fertilization to aging. Hyaluronidase-mediated degradation of HA increases the permeability of connective tissues and decreases the viscosity of body fluids and is also involved in bacterial pathogenesis, the spread of toxins and venoms, acrosomal reaction/ovum fertilization, and cancer progression. Furthermore, these enzymes may promote direct contact between pathogens and the host cell surfaces. Depolymerization of HA also adversely affects the role of ECM and impairs its activity as a reservoir of growth factors, cytokines and various enzymes involved in signal transduction. Inhibition of HA degradation therefore may be crucial in reducing disease progression and spread of venom/toxins and bacterial pathogens. Hyaluronidase inhibitors are potent, ubiquitous regulating agents that are involved in maintaining the balance between the anabolism and catabolism of HA. Hyaluronidase inhibitors could also serve as contraceptives and anti-tumor agents and possibly have antibacterial and anti-venom/toxin activities. Additionally, these molecules can be used as pharmacological tools to study the physiological and pathophysiological role of HA and hyaluronidases.  相似文献   

18.
The heart remodels myocardial tissue in physiological and pathological response. The cell-extracellular matrix (ECM) interaction provides not only structural and mechanical support but also important biological signaling during tissue remodeling. Among various ECM molecules, tenascin-C (TNC) is well known as a regulator of multiple cellular functions during embryogenesis, wound healing or cancer progression. In the heart, TNC appears in several important steps of embryonic development such as the initial differentiation of cardiomyocytes or coronary vasculo/angiogenesis, but it is not detected in a normal adult myocardium. However, TNC is found to re-express after myocardial injury and may regulate cellular behavior during tissue remodeling by modulating the attachment of cardiomyocytes to connective tissue, by enhancing migration and differentiation of myofibroblasts, and by inducing matrix metallo-proteinases. TNC also interacts with other ECM molecules and may modulate progression of fibrosis. Furthermore, transient and site specific expression of TNC closely associated with myocardial injury and inflammation suggests not only its key roles during tissue remodeling but also that TNC can be a marker for myocardial disease activity.  相似文献   

19.
The metastasis of cancer cells from the site of the primary tumor to distant sites in the body represents the most deadly manifestation of cancer. In order for metastasis to occur, cancer cells need to evade anoikis, which is defined as apoptosis caused by loss of attachment to extracellular matrix (ECM). Signaling from ErbB2 has previously been linked to the evasion of anoikis in breast cancer cells but the precise molecular mechanisms by which ErbB2 blocks anoikis have yet to be unveiled. In this study, we have identified a novel mechanism by which anoikis is inhibited in ErbB2-expressing cells: multicellular aggregation during ECM-detachment. Our data demonstrate that disruption of aggregation in ErbB2-positive cells is sufficient to induce anoikis and that this anoikis inhibition is a result of aggregation-induced stabilization of EGFR and consequent ERK/MAPK survival signaling. Furthermore, these data suggest that ECM-detached ErbB2-expressing cells may be uniquely susceptible to targeted therapy against EGFR and that this sensitivity could be exploited for specific elimination of ECM-detached cancer cells.  相似文献   

20.
Studies on the stem cell niche and the efficacy of cancer therapeutics require complex multicellular structures and interactions between different cell types and extracellular matrix (ECM) in three dimensional (3D) space. We have engineered a 3D in vitro model of mammary gland that encompasses a defined, porous collagen/hyaluronic acid (HA) scaffold forming a physiologically relevant foundation for epithelial and adipocyte co-culture. Polarized ductal and acinar structures form within this scaffold recapitulating normal tissue morphology in the absence of reconstituted basement membrane (rBM) hydrogel. Furthermore, organoid developmental outcome can be controlled by the ratio of collagen to HA, with a higher HA concentration favouring acinar morphological development. Importantly, this culture system recapitulates the stem cell niche as primary mammary stem cells form complex organoids, emphasising the utility of this approach for developmental and tumorigenic studies using genetically altered animals or human biopsy material, and for screening cancer therapeutics for personalised medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号