首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a data pipeline developed to extract the quantitative data on segmentation gene expression from confocal images of gene expression patterns in Drosophila. The pipeline consists of five steps: image segmentation, background removal, temporal characterization of an embryo, data registration and data averaging. This pipeline was successfully applied to obtain quantitative gene expression data at cellular resolution in space and at the 6.5-minute resolution in time, as well as to construct a spatiotemporal atlas of segmentation gene expression. Each data pipeline step can be easily adapted to process a wide range of images of gene expression patterns.  相似文献   

2.
In this review, we summarize original methods for the extraction of quantitative information from confocal images of gene-expression patterns. These methods include image segmentation, the extraction of quantitative numerical data on gene expression, and the removal of background signal and spatial registration. Finally, it is possible to construct a spatiotemporal atlas of gene expression from individual images recorded at each developmental stage. Initially all methods were developed to extract quantitative numerical information from confocal images of segmentation gene expression in Drosophila melanogaster. The application of these methods to Drosophila images makes it possible to reveal new mechanisms in the formation of segmentation gene expression domains, as well as to construct a quantitative atlas of segmentation gene expression. Most image processing procedures can be easily adapted to process a wide range of biological images.  相似文献   

3.
In this review we summarize original methods for the extraction quantitative information from the confocal images of gene expression patterns. These methods include image segmentation, extraction of quantitative numerical data on gene expression, removal of background signal and spatial registration. Finally it is possible to construct a spatiotemporal atlas of gene expression form individual images obtained at each developmental stage. Initially all methods were developed to extract quantitative numerical information form confocal images of segmentation gene expression in Drosophila melanogaster. Application of these methods to Drosophila images makes it possible to reveal new mechanisms of formation of segmentation gene expression domains, as well as to construct the quantitative atlas of segmentation gene expression. Most image processing procedures can be easily adapted to process a wide range of biological images.  相似文献   

4.
《Fly》2013,7(2):151-156
In modern functional genomics registration techniques are used to construct reference gene expression patterns and create a spatiotemporal atlas of the expression of all the genes in a network. In this paper we present a software package called GCPReg, which can be used to register the expression patterns of segmentation genes in the early Drosophila embryo. The key task which this package performs is the extraction of spatially localized characteristic features of expression patterns. To facilitate this task, we have developed an easy-to-use interactive graphical interface. We describe GCPReg usage and demonstrate how this package can be applied to register gene expression patterns in wild-type and mutants. GCPReg has been designed to operate on a UNIX platform and is freely available via the Internet at http://urchin.spbcas.ru/downloads/GCPReg/GCPReg.htm.  相似文献   

5.
An accurate determination of the 3-D positions of multiple spots in images obtained by confocal microscopy is essential for the investigation of the spatial distribution of specific components or processes in biological specimens. The position of the centroid, as an estimator for the position of a spot, can be calculated on the basis of all voxels that belong to the domain of the spot. For this calculation a domain that defines which voxels belong to the spot must be delimited. To create a boundary for a domain we developed a 3-D image segmentation procedure: the largest contour segmentation (LCS). This procedure is based on an iterative region-growing procedure around each local maximum of intensity. By means of this procedure the position of each spot was determined accurately and automatically. Qualities of the procedure were evaluated by means of simulated test-images as well as 3-D images of real biological specimens.  相似文献   

6.
The determination of volumes and interface areas from confocal laser scanning microscopy (CLSM) images requires the identification of component objects by segmentation. An automated method for the determination of segmentation thresholds for CLSM imaging of biofilms was developed. The procedure, named objective threshold selection (OTS), is a three-dimensional development of the approach introduced by the popular robust automatic threshold selection (RATS) method. OTS is based on the statistical properties of local gray-values and gradients in the image. By characterizing the dependence between a volumetric feature and the intensity threshold used for image segmentation, the former can be determined with an arbitrary confidence level, with no need for user intervention. The identification of an objective segmentation procedure renders the possibility for the full automation of volume and interfacial area measurement. Images from two distinct biofilm systems, acquired using different experimental techniques and instrumental setups were segmented by OTS to determine biofilm volume and interfacial area. The reliability of measurements for each case was analyzed to identify optimal procedure for image acquisition. The automated OTS method was shown to reproduce values obtained manually by an experienced operator.  相似文献   

7.
Deriving quantitative conclusions from microarray expression data   总被引:4,自引:0,他引:4  
MOTIVATION: The last few years have seen the development of DNA microarray technology that allows simultaneous measurement of the expression levels of thousands of genes. While many methods have been developed to analyze such data, most have been visualization-based. Methods that yield quantitative conclusions have been diverse and complex. RESULTS: We present two straightforward methods for identifying specific genes whose expression is linked with a phenotype or outcome variable as well as for systematically predicting sample class membership: (1) a conservative, permutation-based approach to identifying differentially expressed genes; (2) an augmentation of K-nearest-neighbor pattern classification. Our analyses replicate the quantitative conclusions of Golub et al. (1999; Science, 286, 531-537) on leukemia data, with better classification results, using far simpler methods. With the breast tumor data of Perou et al. (2000; Nature, 406, 747-752), the methods lend rigorous quantitative support to the conclusions of the original paper. In the case of the lymphoma data in Alizadeh et al. (2000; Nature, 403, 503-511), our analyses only partially support the conclusions of the original authors. AVAILABILITY: The software and supplementary information are available freely to researchers at academic and non-profit institutions at http://cc.ucsf.edu/jain/public  相似文献   

8.
Processing of gene expression data generated by quantitative real-time RT-PCR   总被引:37,自引:0,他引:37  
Muller PY  Janovjak H  Miserez AR  Dobbie Z 《BioTechniques》2002,32(6):1372-4, 1376, 1378-9
Quantitative real-time PCR represents a highly sensitive and powerful technique for the quantitation of nucleic acids. It has a tremendous potential for the high-throughput analysis of gene expression in research and routine diagnostics. However, the major hurdle is not the practical performance of the experiments themselves but rather the efficient evaluation and the mathematical and statistical analysis of the enormous amount of data gained by this technology, as these functions are not included in the software provided by the manufacturers of the detection systems. In this work, we focus on the mathematical evaluation and analysis of the data generated by quantitative real-time PCR, the calculation of the final results, the propagation of experimental variation of the measured values to the final results, and the statistical analysis. We developed a Microsoft Excel-based software application coded in Visual Basic for Applications, called Q-Gene, which addresses these points. Q-Gene manages and expedites the planning, performance, and evaluation of quantitative real-time PCR experiments, as well as the mathematical and statistical analysis, storage, and graphical presentation of the data. The Q-Gene software application is a tool to cope with complex quantitative real-time PCR experiments at a high-throughput scale and considerably expedites and rationalizes the experimental setup, data analysis, and data management while ensuring highest reproducibility.  相似文献   

9.
10.
Assessing reliability of gene clusters from gene expression data   总被引:5,自引:0,他引:5  
The rapid development of microarray technologies has raised many challenging problems in experiment design and data analysis. Although many numerical algorithms have been successfully applied to analyze gene expression data, the effects of variations and uncertainties in measured gene expression levels across samples and experiments have been largely ignored in the literature. In this article, in the context of hierarchical clustering algorithms, we introduce a statistical resampling method to assess the reliability of gene clusters identified from any hierarchical clustering method. Using the clustering trees constructed from the resampled data, we can evaluate the confidence value for each node in the observed clustering tree. A majority-rule consensus tree can be obtained, showing clusters that only occur in a majority of the resampled trees. We illustrate our proposed methods with applications to two published data sets. Although the methods are discussed in the context of hierarchical clustering methods, they can be applied with other cluster-identification methods for gene expression data to assess the reliability of any gene cluster of interest. Electronic Publication  相似文献   

11.
Both molecular marker and gene expression data were considered alone as well as jointly to serve as additive predictors for two pathogen-activity-phenotypes in real recombinant inbred lines of soybean. For unobserved phenotype prediction, we used a bayesian hierarchical regression modeling, where the number of possible predictors in the model was controlled by different selection strategies tested. Our initial findings were submitted for DREAM5 (the 5th Dialogue on Reverse Engineering Assessment and Methods challenge) and were judged to be the best in sub-challenge B3 wherein both functional genomic and genetic data were used to predict the phenotypes. In this work we further improve upon this previous work by considering various predictor selection strategies and cross-validation was used to measure accuracy of in-data and out-data predictions. The results from various model choices indicate that for this data use of both data types (namely functional genomic and genetic) simultaneously improves out-data prediction accuracy. Adequate goodness-of-fit can be easily achieved with more complex models for both phenotypes, since the number of potential predictors is large and the sample size is not small. We also further studied gene-set enrichment (for continuous phenotype) in the biological process in question and chromosomal enrichment of the gene set. The methodological contribution of this paper is in exploration of variable selection techniques to alleviate the problem of over-fitting. Different strategies based on the nature of covariates were explored and all methods were implemented under the bayesian hierarchical modeling framework with indicator-based covariate selection. All the models based in careful variable selection procedure were found to produce significant results based on permutation test.  相似文献   

12.
With scanning confocal microscopy we obtained three-dimensional (3D) reconstructions of the transverse tubular system (t-system) of rabbit ventricular cells. We accomplished this by labeling the t-system with dextran linked to fluorescein or, alternatively, wheat-germ agglutinin conjugated to an Alexa fluor dye. Image processing and visualization techniques allowed us to reconstruct the t-system in three dimensions. In a myocyte lying flat on a coverslip, t-tubules typically progressed from its upper and lower surfaces. 3D reconstructions of the t-tubules also suggested that some of them progressed from the sides of the cell. The analysis of single t-tubules revealed novel morphological features. The average diameter of single t-tubules from six cells was estimated to 448 ± 172 nm (mean ± SD, number of t-tubules 348, number of cross sections 5323). From reconstructions we were able to identify constrictions occurring every 1.87 ± 1.09 μm along the principal axis of the tubule. The cross-sectional area of these constrictions was reduced to an average of 57.7 ± 27.5% (number of constrictions 170) of the adjacent local maximal areas. Principal component analysis revealed flattening of t-tubular cross sections, confirming findings that we obtained from electron micrographs. Dextran- and wheat-germ agglutinin-associated signals were correlated in the t-system and are therefore equally good markers. The 3D structure of the t-system in rabbit ventricular myocytes seems to be less complex than that found in rat. Moreover, we found that t-tubules in rabbit have approximately twice the diameter of those in rat. We speculate that the constrictions (or regions between them) are sites of dyadic clefts and therefore can provide geometric markers for colocalizing dyadic proteins. In consideration of the resolution of the imaging system, we suggest that our methods permit us to obtain spatially resolved 3D reconstructions of the t-system in rabbit cells. We also propose that our methods allow us to characterize pathological defects of the t-system, e.g., its remodeling as a result of heart failure.  相似文献   

13.
14.
15.
16.
17.
18.

Background  

MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions.  相似文献   

19.
20.
MOTIVATION: Consensus clustering, also known as cluster ensemble, is one of the important techniques for microarray data analysis, and is particularly useful for class discovery from microarray data. Compared with traditional clustering algorithms, consensus clustering approaches have the ability to integrate multiple partitions from different cluster solutions to improve the robustness, stability, scalability and parallelization of the clustering algorithms. By consensus clustering, one can discover the underlying classes of the samples in gene expression data. RESULTS: In addition to exploring a graph-based consensus clustering (GCC) algorithm to estimate the underlying classes of the samples in microarray data, we also design a new validation index to determine the number of classes in microarray data. To our knowledge, this is the first time in which GCC is applied to class discovery for microarray data. Given a pre specified maximum number of classes (denoted as K(max) in this article), our algorithm can discover the true number of classes for the samples in microarray data according to a new cluster validation index called the Modified Rand Index. Experiments on gene expression data indicate that our new algorithm can (i) outperform most of the existing algorithms, (ii) identify the number of classes correctly in real cancer datasets, and (iii) discover the classes of samples with biological meaning. AVAILABILITY: Matlab source code for the GCC algorithm is available upon request from Zhiwen Yu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号