首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of U937 cells with epidermal growth factor (EGF) induces phosphorylation of tis21 and subsequent interaction of tis21 with Pin-1, resulting in the increased cell death with mitochondrial depolarization. Ser147 and Ser149 residues of tis21 were strongly phosphorylated by p-Erk1/2 and p-p38(MAPK), respectively, but not by JNK. To investigate the significance of phosphorylation of the Ser147 residue, Pin-1, one of the mitotic regulators that binds to the Ser(P)/Thr(P)-Pro region, was employed. Wild type tis21 phosphorylated by p-Erk1/2 clearly increased its binding to Pin-1, but not the P148A mutant, indicating that Pin-1 was bound to the Ser(P)147-Pro148 region of tis21. Transfection of tis21 significantly enhanced EGF-induced Pin-1 diffusion to cytoplasm, compared with that in the vector-transfected cells. Knockdown of tis21 expression by using shRNAi significantly inhibited EGF-induced Pin-1 diffusion, and analysis by flow cytometry after JC-1 stain and confocal microscope revealed that EGF aggravated tis21-induced mitochondrial depolarization and cell death. Furthermore, tis21 was bound to cyclin B1 and Cdc2 and inhibited its activity in vivo and in vitro. In summary, treatment of U937 cells with EGF activates Erk1/2, which in turn phosphorylates Ser147 of tis21 and induces tis21 and Pin-1 binding and mitochondrial depolarization. These data suggest, for the first time, a mechanism of how EGF can be antiproliferative in human tumor cells: binding of tis21/BTG2/pc3 to Pin-1 or cyclin B1-Cdc2 complex and induction of mitochondrial depolarization.  相似文献   

2.
B Ruan  J Hoskins  P N Bryan 《Biochemistry》1999,38(26):8562-8571
In vitro folding of mature subtilisin is extremely slow. The isolated pro-domain greatly accelerates in vitro folding of subtilisin in a bimolecular reaction whose product is a tight complex between folded subtilisin and folded pro-domain. In our studies of subtilisin, we are trying to answer two basic questions: why does subtilisin fold slowly without the pro-domain and what does the pro-domain do to accelerate the folding rate? To address these general questions, we are trying to characterize all the rate constants governing individual steps in the bimolecular folding reaction of pro-domain with subtilisin. Here, we report the results of a series of in vitro folding experiments using an engineered pro-domain mutant which is independently stable (proR9) and two calcium-free subtilisin mutants. The bimolecular folding reaction of subtilisin and proR9 occurs in two steps: an initial binding of proR9 to unfolded subtilisin, followed by isomerization of the initial complex into the native complex. The central findings are as follows. First, the independently stable proR9 folds subtilisin much faster than the predominantly unfolded wild-type pro-domain. Second, at micromolar concentrations of proR9, the subtilisin folding reaction becomes limited by the rate at which prolines in the unfolded state can isomerize to their native conformation. The simpliest mechanism which closely describes the data includes two denatured forms of subtilisin, which form the initial complex with proR9 at the same rate but which isomerize to the fully folded complex at much different rates. In this model, 77% of the subtilisin isomerizes to the native form slowly and the remaining 23% isomerizes more rapidly (1.5 s-1). The slow-folding population may be unfolded subtilisin with the trans form of proline 168, which must isomerize to the cis form during refolding. Third, in the absence of proline isomerization, the rate of subtilisin folding is rapid and at [proR9] 3 s-1. The implications of these results concerning why subtilisin folds slowly without the pro-domain are discussed.  相似文献   

3.
Diabetic cardiomyopathy (DCM) is characterized by myocardial hypertrophy and fibrosis. This study aimed to investigate the effects of microRNA (miR)-34a on myocardial fibrosis in DCM and its potential mechanism of targeting Pin-1 signaling. Vimentin and Pin-1 proteins in mouse cardiac tissues were detected by immunohistochemical staining. Locked nucleic acid in situ hybridization was used to measure miR-34a expression in cardiac tissues. Primary mouse cardiac fibroblasts (CFs) were transfected with a mimics control/miR-34a mimics or Pin-1 plasmid and cultured in high-glucose (HG) Dulbecco's modified Eagle's medium. The miR-34a levels were measured by quantitative polymerase chain reaction. The apoptosis and viability of transfected cells were detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling and Cell Counting Kit-8 assays respectively. A cell migration experiment and dual-luciferase reporter assay were also performed. The body weight and fasting blood glucose of DCM mice were significantly higher than those in the control (CTL) group. In addition, DCM mice had decreased serum insulin levels and impaired cardiac function. The number of CFs in the DCM group was higher than in the CTL group and Pin-1 expression was upregulated. The expression level of miR-34a in the cardiac tissue of mice in the DCM group was obviously downregulated compared with the CTL group. The HG stimulation of CFs for 48 h significantly downregulated the expression level of miR-34a and was associated with increased Type I collagen expression, cell viability, and migration and decreased apoptosis. However, these effects could be reversed by overexpressing miR-34a in HG-induced CFs. Furthermore, we found that Pin-1 was a direct target of miR-34a. Our results suggest that miR-34a can attenuate myocardial fibrosis in DCM by reducing Type I collagen production, cell viability, and migration and increasing the apoptosis of CFs by targeting Pin-1 signaling.  相似文献   

4.
Pin1 is an emerging oncology target strongly implicated in Ras and ErbB2-mediated tumourigenesis. Pin1 isomerizes bonds linking phospho-serine/threonine moieties to proline enabling it to play a key role in proline-directed kinase signalling. Here we report a novel series of Pin1 inhibitors based on a phenyl imidazole acid core that contains sub-μM inhibitors. Compounds have been identified that block prostate cancer cell growth under conditions where Pin1 is essential.  相似文献   

5.
The PVT gene frequently amplifies with MYC in tumor cells.   总被引:7,自引:2,他引:5       下载免费PDF全文
The line of human colon carcinoma cells known as COLO320-DM contains an amplified and abnormal allele of the proto-oncogene MYC (DMMYC). Exon 1 and most of intron 1 of MYC have been displaced from DMMYC by a rearrangement of DNA. The RNA transcribed from DMMYC is a chimera that begins with an ectopic sequence of 176 nucleotides and then continues with exons 2 and 3 of MYC. The template for the ectopic sequence represents exon 1 of a gene known as PVT, which lies 50 kilobase pairs downstream of MYC. We encountered three abnormal configurations of MYC and PVT in the cell lines analyzed here: (i) amplification of the genes, accompanied by insertion of exon 1 and an undetermined additional portion of PVT within intron 1 of MYC to create DMMYC; (ii) selective deletion of exon 1 of PVT from amplified DNA that contains downstream portions of PVT and an intact allele of MYC; and (iii) coamplification of MYC and exon 1 of PVT, but not of downstream portions of PVT. We conclude that part or all of PVT is frequently amplified with MYC and that intron 1 of PVT represents a preferred boundary for amplification affecting MYC.  相似文献   

6.
The formation and dissociation of the aldolase-dihydroxyacetone phosphate complex were studied by following changes in A240 [Topper, Mehler & Bloom (1957), Science 126, 1287-1289]. It was shown that the enzyme-substrate complex (ES) slowly isomerizes according to the following reaction: (formula: see text) the two first-order rate constants for the isomerization step being k+2 = 1.3s-1 and k-2 = 0.7s-1 at 20 degrees C and pH 7.5. The dissociation of the ES complex was provoked by the addition of the competitive inhibitor hexitol 1,6-bisphosphate. At 20 degrees C and pH 7.5, k+1 was 4.7 X 10(6)M-1-S-1 and k-1 was 30s-1. Both the ES and the ES* complexes react rapidly with 1.7 mM-glyceraldehyde 3-phosphate, the reaction being practically complete in 40 ms. This shows that the ES* complex is not a dead-end complex. Evidence was also provided that aldolase binds and utilizes only the keto form of dihydroxyacetone phosphate.  相似文献   

7.
8.
Proline racemase exists in two states, one of which binds and isomerizes L-proline and the other of which binds and isomerizes D-proline. In the enzyme-catalyzed racemization of proline at high substrate concentrations, the interconversion of the two forms of the free enzyme becomes rate limiting. The tracer perturbation method of Britton (1966, 1973) vividly demonstrates the kinetic importance of this enzyme interconversion under oversaturating conditions and allows an estimate of the rate constant for this reaction of 10(5) s-1. It is further shown that the enzyme is bound state saturated and the peak-switch concentration, Cp, is 125 mM. At substrate concentrations higher than 125 mM the enzyme becomes oversaturated, and the reaction rate is limited by the transition state for the interconversion of two forms of the free enzyme. It seems likely that the two free enzyme forms differ only in the protonation states of the acidic and basic groups at the active site.  相似文献   

9.
The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation, rigorous enzymatic assays of isomerization are required. However, most measures of isomerase activity require significant constraints on substrate sequence and only yield rate constants for the cis isomer, [Formula: see text] and apparent Michaelis constants, [Formula: see text]. By contrast, NMR lineshape analysis is a powerful tool for determining microscopic rates and populations of each state in a complex binding scheme. The isolated catalytic domain of Pin1 was employed as a first step towards elucidating the reaction scheme of the full-length enzyme. A 24-residue phosphopeptide derived from the amyloid precurser protein intracellular domain (AICD) phosphorylated at Thr668 served as a biologically-relevant Pin1 substrate. Specific (13)C labeling at the Pin1-targeted proline residue provided multiple reporters sensitive to individual isomer binding and on-enzyme catalysis. We have performed titration experiments and employed lineshape analysis of phosphopeptide (13)C-(1)H constant time HSQC spectra to determine [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] for the catalytic domain of Pin1 acting on this AICD substrate. The on-enzyme equilibrium value of [E·trans]/[E·cis]?=?3.9 suggests that the catalytic domain of Pin1 is optimized to operate on this substrate near equilibrium in the cellular context. This highlights the power of lineshape analysis for determining the microscopic parameters of enzyme catalysis, and demonstrates the feasibility of future studies of Pin1-PPIase mutants to gain insights on the catalytic mechanism of this important enzyme.  相似文献   

10.
We earlier developed a novel method to detect translocation of the glucose transporter (GLUT) directly and simply using c-MYC epitope-tagged GLUT (GLUTMYC). To define the effect of platelet-derived growth factor (PDGF) on glucose transport in 3T3-L1 adipocytes, we investigated the PDGF- and insulin-induced glucose uptake, translocation of glucose transporters, and phosphatidylinositol (PI) 3-kinase activity in 3T3-L1, 3T3-L1GLUT4MYC, and 3T3-L1GLUT1MYC adipocytes. Insulin and PDGF stimulated glucose uptake by 9-10- and 5.5-6.5-fold, respectively, in both 3T3-L1 and 3T3-L1GLUT4MYC adipocytes. Exogenous GLUT4MYC expression led to enhanced PDGF-induced glucose transport. In 3T3-L1GLUT4MYC adipocytes, insulin and PDGF induced an 8- and 5-fold increase in GLUT4MYC translocation, respectively, determined in a cell-surface anti-c-MYC antibody binding assay. This PDGF-induced GLUT4MYC translocation was further demonstrated with fluorescent detection. In contrast, PDGF stimulated a 2-fold increase of GLUT1MYC translocation and 2.5-fold increase of glucose uptake in 3T3-L1GLUT1MYC adipocytes. The PDGF-induced GLUT4MYC translocation, glucose uptake, and PI 3-kinase activity were maximal (100%) at 5-10 min and thereafter rapidly declined to 40, 30, and 12%, respectively, within 60 min, a time when effects of insulin were maximal. Wortmannin (0.1 microM) abolished PDGF-induced GLUT4MYC translocation and glucose uptake in 3T3-L1GLUT4MYC adipocytes. These results suggest that PDGF can transiently trigger the translocation of GLUT4 and stimulate glucose uptake by translocation of both GLUT4 and GLUT1 in a PI 3-kinase-dependent signaling pathway in 3T3-L1 adipocytes.  相似文献   

11.
Kinetics of the intestinal brush border proline (Imino) carrier   总被引:2,自引:0,他引:2  
The kinetics of L-proline transport across intestinal brush borders via the Imino carrier were studied using membrane vesicles. The Imino carrier is defined as the agent responsible for L-alanine insensitive. Na+-dependent uptake of L-proline. Initial rate measurements were made under voltage clamped conditions (pD = 0) to investigate L-proline transport as a function of cis and trans Na+ and proline concentrations. Under zero-trans conditions, increasing cis Na+ activated proline uptake with a Hill coefficient of 1.7 and decreased the apparent Kt with no change in Jimax. The Jimax was approximately 60 pmol mg-1 s-1 and the apparent Kt ranged from 0.25 mM at cis Na = 100 to 1.0 mM at cis Na+ = 30 mM. Trans Na inhibited proline uptake via a reduction in Jimax. Trans proline had no significant effect in the absence of trans Na+, but it relieved the trans Na+ inhibition. Under equilibrium exchange conditions, the Jimax was twice that observed under zero-trans conditions. These kinetics of L-proline transport suggest a model in which uptake occurs by a rapid equilibrium iso-ordered ter ter system. Two Na+ ions bind first to the carrier on the cis face of the membrane to increase the affinity of the carrier for proline. The fully loaded complex then isomerizes to release the substrates to the trans side. The partially loaded Na+-only forms are unable to translocate across the membrane. A rate-limiting step appears to be the isomerization of unloaded carrier from the trans to the cis side of the membrane.  相似文献   

12.
13.
14.
Pinning down proline-directed phosphorylation signaling   总被引:13,自引:0,他引:13  
The reversible phosphorylation of proteins on serine or threonine residues preceding proline (Ser/Thr-Pro) is a major cellular signaling mechanism. Although it is proposed that phosphorylation regulates the function of proteins by inducing a conformational change, there are few clues about the actual conformational changes and their importance. Recent identification of the novel prolyl isomerase Pin1 that specifically isomerizes only the phosphorylated Ser/Thr-Pro bonds in certain proteins led us to propose a new signaling mechanism, whereby prolyl isomerization catalytically induces conformational changes in proteins following phosphorylation to regulate protein function. Emerging data indicate that such conformational changes have profound effects on catalytic activity, dephosphorylation, protein-protein interactions, subcellular location and/or turnover. Furthermore, this post-phosphorylation mechanism might play an important role in cell growth control and diseases such as cancer and Alzheimer's.  相似文献   

15.
Exogenous proline specifically stimulates the growth rate of enteric bacteria in media of inhibitory osmotic strength (J. H. B. Christian, Aust. J. Biol. Sci. 8:490-497, 1955). I observed that Salmonella typhimurium mutants which lack both of the previously known proline permeases (putP proP) are stimulated by proline in media of inhibitory osmolarity. I propose that there is a third proline permease which functions only in media of elevated osmolarity. This conclusion is based on the observations that, in media of elevated osmolarity, (i) the sensitivity of putP proP mutants to toxic proline analogs increases, (ii) proline requirements for maximal growth of proline auxotrophic putP proP mutants decreases, and (iii) the specific rate of incorporation of radioactive proline into protein of growing cells increases. I obtained a Tn10-induced mutation in a gene (proU) required for the functioning of the third proline permease and determined the map location to be at 59 map units of the chromosome, between srlA and tct, 66% linked to nalB in P22 transduction. My results suggest that the function of the third, osmotically stimulated permease might be to accumulate high intracellular proline levels during osmotic stress. Possible mechanisms by which proline might cause growth stimulation are discussed.  相似文献   

16.
Angiogenesis is a fundamental step in several important physiological events and pathological conditions including embryonic development, wound repair, tumor growth and metastasis. PRKX was identified as a novel type-I cAMP-dependent protein kinase gene expressed in multiple developing tissues. PRKX has also been shown to be phylogenetically and functionally distinct from PKA. This study presents the first evidence that PRKX stimulates endothelial cell proliferation, migration, and vascular-like structure formation, which are the three essential processes for angiogenesis. In contrast, classic PKA demonstrated an inhibitory effect on endothelia vascular-like structure formation. Our findings suggest that PRKX is an important protein kinase engaged in the regulation of angiogenesis and could play critical roles in various physiological and pathological conditions involving angiogenesis. PRKX binds to Pin-1, Magi-1 and Bag-3, which regulate cell proliferation, apoptosis, differentiation and tumorigenesis. The interaction of PRKX with Pin-1, Magi-1 and Bag-3 could contribute to the stimulating role of PRKX in angiogenesis.  相似文献   

17.
18.
Pinning down cell signaling, cancer and Alzheimer's disease   总被引:17,自引:0,他引:17  
Protein phosphorylation on certain serine or threonine residues preceding proline (Ser/Thr-Pro) is a pivitol signaling mechanism in diverse cellular processes and its deregulation can lead to human disease. However, little is known about how these phosphorylation events actually control cell signaling. Pin1 is a highly conserved enzyme that isomerizes only the phosphorylated Ser/Thr-Pro bonds in certain proteins, thereby inducing conformational changes. Recent results indicate that such conformational changes following phosphorylation are a novel signaling mechanism pivotal in regulating many cellular functions. This mechanism also offers new insights into the pathogenesis and treatment of human disease, most notably cancer and Alzheimer's disease. Thus, Pin1 plays a key role in linking signal transduction to the pathogenesis of cancer and Alzheimer's disease - two major age-related diseases.  相似文献   

19.
20.
The dipeptide His-Pro isomerizes from all-s-trans to partly s-cis when titrated in D2O from acidic to neutral pD as observed by 13C and 1H nuclear magnetic resonance of the proline side chain. This isomerization is reported by the His C-2 and C-4 protons and carbons which show distinct, well-resolved resonances for each isomer. The influence of the His-Pro peptide bond rotational state on the histidine protons far removed from the bond has not been previously observed in model compounds or peptides. The peptides thyroliberin (TRH), [3-MeHis2]-TRH, and [3-MeHis6]-, [Sar1,Al8]-, and Nalpha-acetylangiotensin II were found to similarly isomerize from all-s-trans to partly s-cis as reported by their His C-2 and C-4 proton resonances. The His C-2 and C-4 protons in the peptides [1,3-diMeHis2]-TRH and [1-MeHis6]-, and [homoHis6]-angiotensin do not report this isomerization. Angiotensin II has previously been found to exhibit the same isomerization. The reporting of the s-trans to s-cis isomerization by the His C-2 proton appears to be correlated with the known potencies of the five angiotensin peptides in rat uterine strips and of the three TRH peptides by radioimmunoassay of released thyrotropin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号