首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As recently suggested, the target of rapamycin (TOR) pathway, rather than molecular damage by free radicals, drives aging and diseases of aging. But may mitochondria nevertheless contribute to aging? Here, I discuss aimless program‐like aging (versus altruistic program), conflict between the cell and mitochondria, cell murder (versus cell suicide) and the role of mitochondria in aging. In particular, life‐long selection among mitochondria may yield “selfish” (malignant) mitochondria resistant to autophagy. And TOR may create an intra‐cellular environment that is permissive for such selfish mitochondria. In theory, pharmacologic inhibitors of the TOR pathway may reverse accumulation of defective mitochondria, while also inhibiting the aging process. J. Cell. Biochem. 102: 1389–1399, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

2.
p53 is an important inducer of organismal aging. However, its roles in the aging of skin remain unclear. Here we show that mice with chronic activation of p53 develop an aging phenotype in the skin associated with a reduction of subcutaneous fat and loss of sebaceous gland (SG). The reduction in the fat layer may result from the decrease of mammalian TOR complex 1 (mTORC1) activity accompanied by elevated expression of energy expenditure genes, and possibly as compensatory effects, leading to the elevation of peroxisome proliferator-activated receptor (PPAR)γ, an inducer of sebocyte differentiation. In addition, Blimp1+ sebocytes become depleted concomitantly with an increase in cellular senescence, which can be reversed by PPARγ antagonist (BADGE) treatment. Therefore, our results indicate that p53-mediated aging of the skin involves not only thinning through the loss of subdermal fat, but also xerosis or drying of the skin through declining sebaceous gland activity.  相似文献   

3.
Aging, like many other biological processes, is subject to regulation by genes that reside in pathways that have been conserved during evolution. The insulin/ IGF-1 pathway, mTOR pathway and p53 pathway are among those conserved pathways that impact upon longevity and aging-related diseases such as cancer. Most cancers arise in the last quarter of life span with the frequency increasing exponentially with time, and mutation accumulation in critical genes (e.g. p53) in individual cells over a lifetime is thought to be the reason. Recently, we found that the efficiency of the p53 response to stress decline significantly with age in mice, and the time of onset of this decreased p53 response correlates with the life span of mice. Given the crucial role of the p53 in tumor prevention, this decline in p53 activity at older ages in animals could contribute to the observed dramatic increases in cancer frequency, and provides a plausible explanation for the correlation between tumorigenesis and aging in addition to the accumulation of DNA mutations over lifetime. We discuss here the coordination and communication between the p53 pathway and the IGF-1-mTOR pathways, and their possible impact on cancer and longevity.  相似文献   

4.
While ruling out programmed aging, evolutionary theory predicts a quasi-program for aging, a continuation of the developmental program that is not turned off, is constantly on, becoming hyper-functional and damaging, causing diseases of aging. Could it be switched off pharmacologically? This would require identification of a molecular target involved in cell senescence, organism aging and diseases of aging. Notably, cell senescence is associated with activation of the TOR (target of rapamycin) nutrient- and mitogen-sensing pathway, which promotes cell growth, even though cell cycle is blocked. Is TOR involved in organism aging? In fact, in yeast (where the cell is the organism), caloric restriction, rapamycin and mutations that inhibit TOR all slow down aging. In animals from worms to mammals caloric restrictions, life-extending agents, and numerous mutations that increase longevity all converge on the TOR pathway. And, in humans, cell hypertrophy, hyper-function and hyperplasia, typically associated with activation of TOR, contribute to diseases of aging. Theoretical and clinical considerations suggest that rapamycin may be effective against atherosclerosis, hypertension and hyper-coagulation (thus, preventing myocardial infarction and stroke), osteoporosis, cancer, autoimmune diseases and arthritis, obesity, diabetes, macula-degeneration, Alzheimer’s and Parkinson’s diseases. Finally, I discuss that extended life span will reveal new causes for aging (e.g., ROS, ‘wear and tear’, Hayflick limit, stem cell exhaustion) that play a limited role now, when quasi-programmed senescence kills us first.  相似文献   

5.
Mitochondrial signaling, TOR, and life span   总被引:1,自引:0,他引:1  
Schieke SM  Finkel T 《Biological chemistry》2006,387(10-11):1357-1361
Growing evidence supports the concept that mitochondrial metabolism and reactive oxygen species (ROS) play a major role in aging and determination of an organism's life span. Cellular signaling pathways regulating mitochondrial activity, and hence the generation of ROS and retrograde signaling events originating in mitochondria, have recently moved into the spotlight in aging research. Involvement of the energy-sensing TOR pathway in both mitochondrial signaling and determination of life span has been shown in several studies. This brief review summarizes the recent progress on how mitochondrial signaling might contribute to the aging process with a particular emphasis on TOR signaling from invertebrates to humans.  相似文献   

6.
衰老是一个非常复杂的过程,与细胞和组织中累积的各种大分子(DNA、蛋白质和脂质)损伤密不可分,并且是由细胞中不同的信号通道共同调控的结果,而雷帕霉素靶标途径就是其中的一种。该途径整合了各种来自细胞内外的信号以调控细胞的生长、增殖和代谢。越来越多证据表明,雷帕霉素靶蛋白(target of rapamycin,TOR)控制着细胞和组织老化的速度,影响着整个机体衰老过程。另外TOR参与调控自噬的发生,而自噬能使生物大分子和细胞器降解并回收重复利用。多种生物模型研究发现,衰老其实是与自噬的不足有关联。本文对TOR和自噬在衰老过程中的作用和相互关系进行综述,为发展与老年疾病相关的新型治疗方法提供思路。  相似文献   

7.
Hyperactivation of p53 leads to a reduction in tumor formation and an unexpected shortening of life span in two different model systems . The decreased life span occurs with signs of accelerated aging, such as osteoporosis, reduction in body weight, atrophy of organs, decreased stress resistance, and depletion of hematopoietic stem cells. These observations suggest a role for p53 in the determination of life span and the speculation that decreasing p53 activity may result in positive effects on some aging phenotypes . In this report, we show that expression of dominant-negative versions of Drosophila melanogaster p53 in adult neurons extends life span and increases genotoxic stress resistance in the fly. Consistent with this, a naturally occurring allele with decreased p53 activity has been associated with extended survival in humans . Expression of the dominant-negative Drosophila melanogaster p53 constructs does not further increase the extended life span of flies that are calorie restricted, suggesting that a decrease in p53 activity may mediate a component of the calorie-restriction life span-extending pathway in flies.  相似文献   

8.
9.
Aging is a multifactorial process with many mechanisms contributing to the decline. Mutations decreasing insulin/IGF-1 (insulin-like growth factor-1) or TOR (target of rapamycin) kinase-mediated signaling, mitochondrial activity and food intake each extend life span in divergent animal phyla. Understanding how these genetically distinct mechanisms interact to control longevity is a fundamental and fascinating problem in biology. Here we show that mutational inactivation of autophagy genes, which are involved in the degradation of aberrant, damaged cytoplasmic constituents accumulating in all aging cells, accelerates the rate at which the tissues age in the nematode Caenorhabditis elegans. According to our results Drosophila flies deficient in autophagy are also short-lived. We further demonstrate that reduced activity of autophagy genes suppresses life span extension in mutant nematodes with inherent dietary restriction, aberrant insulin/IGF-1 or TOR signaling, and lowered mitochondrial respiration. These findings suggest that the autophagy gene cascade functions downstream of and is inhibited by different longevity pathways in C. elegans, therefore, their effects converge on autophagy genes to slow down aging and lengthen life span. Thus, autophagy may act as a central regulatory mechanism of animal aging.  相似文献   

10.
In response to diverse stresses, the tumor suppressor p53 differentially regulates its target genes, variably inducing cell-cycle arrest, apoptosis or senescence. Emerging evidence indicates that p53 plays an important role in regulating hematopoietic stem cell (HSC) quiescence, self-renewal, apoptosis and aging. The p53 pathway is activated by DNA damage, defects in ribosome biogenesis, oxidative stress and oncogene induced p19ARF upregulation. We present an overview of the current state of knowledge about p53 (and its target genes) in regulating HSC behavior, with the hope that understanding the molecular mechanisms that control p53 activity in HSCs and how p53 mutations affect its role in these events may facilitate the development of therapeutic strategies for eliminating leukemia (and cancer) propagating cells.  相似文献   

11.
12.
《Autophagy》2013,9(3):330-338
Aging is a multifactorial process with many mechanisms contributing to the decline. Mutations decreasing insulin/IGF-1 (insulin-like growth factor-1) or TOR (target of rapamycin) kinase-mediated signaling, mitochondrial activity and food intake each extend life span in divergent animal phyla. Understanding how these genetically distinct mechanisms interact to control longevity is a fundamental and fascinating problem in biology. Here we show that mutational inactivation of autophagy genes, which are involved in the degradation of aberrant, damaged cytoplasmic constituents accumulating in all aging cells, accelerates the rate at which the tissues age in the nematode Caenorhabditis elegans. According to our results Drosophila flies deficient in autophagy are also short-lived. We further demonstrate that reduced activity of autophagy genes suppresses life span extension in mutant nematodes with inherent dietary restriction, aberrant insulin/IGF-1 or TOR signaling, and lowered mitochondrial respiration. These findings suggest that the autophagy gene cascade functions downstream of and is inhibited by different longevity pathways in C. elegans, therefore, their effects converge on autophagy genes to slow down aging and lengthen life span. Thus, autophagy may act as a central regulatory mechanism of animal aging.  相似文献   

13.
14.
Metabolic rate and the subsequent production of reactive oxygen species are thought to contribute to the rate of aging in a wide range of species. The target of rapamycin (TOR) is a well conserved serine/threonine kinase that regulates cell growth in response to nutrient status. Here we demonstrate that in mammalian cells the mammalian TOR (mTOR) pathway plays a significant role in determining both resting oxygen consumption and oxidative capacity. In particular, we demonstrate that the level of complex formation between mTOR and one of its known protein partners, raptor, correlated with overall mitochondrial activity. Disruption of this complex following treatment with the mTOR pharmacological inhibitor rapamycin lowered mitochondrial membrane potential, oxygen consumption, and ATP synthetic capacity. Subcellular fractionation revealed that mTOR as well as mTOR-raptor complexes can be purified in the mitochondrial fraction. Using two-dimensional difference gel electrophoresis, we further demonstrated that inhibiting mTOR with rapamycin resulted in a dramatic alteration in the mitochondrial phosphoproteome. RNA interference-mediated knockdown of TSC2, p70 S6 kinase (S6K1), raptor, or rictor demonstrates that mTOR regulates mitochondrial activity independently of its previously identified cellular targets. Finally we demonstrate that mTOR activity may play an important role in determining the relative balance between mitochondrial and non-mitochondrial sources of ATP generation. These results may provide insight into recent observations linking the TOR pathway to life span regulation of lower organisms.  相似文献   

15.
16.
17.
18.
In many species, reducing nutrient intake without causing malnutrition extends lifespan. Like DR (dietary restriction), modulation of genes in the insulin-signaling pathway, known to alter nutrient sensing, has been shown to extend lifespan in various species. In Drosophila, the target of rapamycin (TOR) and the insulin pathways have emerged as major regulators of growth and size. Hence we examined the role of TOR pathway genes in regulating lifespan by using Drosophila. We show that inhibition of TOR signaling pathway by alteration of the expression of genes in this nutrient-sensing pathway, which is conserved from yeast to human, extends lifespan in a manner that may overlap with known effects of dietary restriction on longevity. In Drosophila, TSC1 and TSC2 (tuberous sclerosis complex genes 1 and 2) act together to inhibit TOR (target of rapamycin), which mediates a signaling pathway that couples amino acid availability to S6 kinase, translation initiation, and growth. We find that overexpression of dTsc1, dTsc2, or dominant-negative forms of dTOR or dS6K all cause lifespan extension. Modulation of expression in the fat is sufficient for the lifespan-extension effects. The lifespan extensions are dependent on nutritional condition, suggesting a possible link between the TOR pathway and dietary restriction.  相似文献   

19.
The relationships between mitochondrial respiration, reactive oxygen species (ROS), and life span are complex and remain controversial. Inhibition of the target of rapamycin (TOR) signaling pathway extends life span in several model organisms. We show here that deletion of the TOR1 gene extends chronological life span in Saccharomyces cerevisiae, primarily by increasing mitochondrial respiration via enhanced translation of mtDNA-encoded oxidative phosphorylation complex subunits. Unlike previously reported pathways regulating chronological life span, we demonstrate that deletion of TOR1 delays aging independently of the antioxidant gene SOD2. Furthermore, wild-type and tor1 null strains differ in life span only when respiration competent and grown in normoxia in the presence of glucose. We propose that inhibition of TOR signaling causes derepression of respiration during growth in glucose and that the subsequent increase in mitochondrial oxygen consumption limits intracellular oxygen and ROS-mediated damage during glycolytic growth, leading to lower cellular ROS and extension of chronological life span.  相似文献   

20.
Genes and proteins rarely act in isolation, but they rather operate as components of complex networks of interacting molecules. Therefore, for understanding their evolution, it may be helpful to take into account the interaction networks in which they participate. It has been shown that selective constraints acting on genes depend on the position that they occupy in the network. Less understood is how the impact of local adaptation at the intraspecific level is affected by the network structure. Here, we analyzed the patterns of molecular evolution of 67 genes involved in the insulin/target of rapamycin (TOR) signal transduction pathway. This well-characterized pathway plays a key role in fundamental processes such as energetic metabolism, growth, reproduction, and aging and is involved in metabolic disorders such as obesity, insulin resistance, and diabetes. For that purpose, we combined genotype data from worldwide human populations with current knowledge of the structure and function of the pathway. We identified the footprint of recent positive selection in nine of the studied genomic regions. Most of the adaptation signals were observed among Middle East and North African, European, and Central South Asian populations. We found that positive selection preferentially targets the most central elements in the pathway, in contrast to previous observations in the whole human interactome. This observation indicates that the impact of positive selection on genes involved in the insulin/TOR pathway is affected by the pathway structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号