首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
《Autophagy》2013,9(10):1098-1107
The GABARAPL1 (GABARAP-LIKE 1) gene was first described as an early estrogen-regulated gene that shares a high sequence homology with GABARAP and is thus a part of the GABARAP family. GABARAPL1, like GABARAP, interacts with the GABAA receptor and tubulin and promotes tubulin polymerization. The GABARAP family members (GABARAP, GABARAPL1 and GABARAPL2) and their close homologs (LC3 and Atg8) are not only involved in the transport of proteins or vesicles but are also implicated in various mechanisms such as autophagy, cell death, cell proliferation and tumor progression. However, despite these similarities, GABARAPL1 displays a complex regulation that is different from that of other GABARAP family members. Moreover, it presents a regulated tissue expression and is the most highly expressed gene among the family in the central nervous system. In this review article, we will outline the specific functions of this protein and also hypothesize about the roles that GABARAPL1 might have in several important biological processes such as cancer or neurodegenerative diseases.  相似文献   

2.
The GABARAPL1 (GABARAP-LIKE 1) gene was first described as an early estrogen-regulated gene that shares a high sequence homology with GABARAP and is thus a part of the GABARAP family. GABARAPL1, like GABARAP, interacts with the GABAA receptor and tubulin and promotes tubulin polymerization. The GABARAP family members (GABARAP, GABARAPL1 and GABARAPL2) and their close homologs (LC3 and Atg8) are not only involved in the transport of proteins or vesicles but are also implicated in various mechanisms such as autophagy, cell death, cell proliferation and tumor progression. However, despite these similarities, GABARAPL1 displays a complex regulation that is different from that of other GABARAP family members. Moreover, it presents a regulated tissue expression and is the most highly expressed gene among the family in the central nervous system. In this review article, we will outline the specific functions of this protein and also hypothesize about the roles that GABARAPL1 might have in several important biological processes such as cancer or neurodegenerative diseases.  相似文献   

3.
GABARAPL1 belongs to the small family of GABARAP proteins (including GABARAP, GABARAPL1 and GABARAPL2/GATE-16), one of the two subfamilies of the yeast Atg8 orthologue. GABARAPL1 is involved in the intracellular transport of receptors, via an interaction with tubulin and GABA(A) or kappa opioid receptors, and also participates in autophagy and cell proliferation. In the present study, we identify the HSP90 protein as a novel interaction partner for GABARAPL1 using GST pull-down, mass spectrometry and coimmunoprecipitation experiments. GABARAPL1 and HSP90 partially colocalize in MCF-7 breast cancer cells overexpressed Dsred-GABARAPL1 and in rat brain. Moreover, treatment of MCF-7 cells overexpressed FLAG-GABARAPL1-6HIS with the HSP90 inhibitor 17-AAG promotes the GABARAPL1 degradation, a process that is blocked by proteasome inhibitors such as MG132, bortezomib and lactacystin. Accordingly, we demonstrate that HSP90 interacts and protects GABARAPL1 from its degradation by the proteasome.  相似文献   

4.
The phospholipid cardiolipin (CL) has been proposed to play a role in selective mitochondrial autophagy, or mitophagy. CL externalization to the outer mitochondrial membrane would act as a signal for the human Atg8 ortholog subfamily, MAP1LC3 (LC3). The latter would mediate both mitochondrial recognition and autophagosome formation, ultimately leading to removal of damaged mitochondria. We have applied quantitative biophysical techniques to the study of CL interaction with various Atg8 human orthologs, namely LC3B, GABARAPL2 and GABARAP. We have found that LC3B interacts preferentially with CL over other di-anionic lipids, that CL-LC3B binding occurs with positive cooperativity, and that the CL-LC3B interaction relies only partially on electrostatic forces. CL-induced increased membrane fluidity appears also as an important factor helping LC3B to bind CL. The LC3B C terminus remains exposed to the hydrophilic environment after protein binding to CL-enriched membranes. In intact U87MG human glioblastoma cells rotenone-induced autophagy leads to LC3B translocation to mitochondria and subsequent delivery of mitochondria to lysosomes. We have also observed that GABARAP, but not GABARAPL2, interacts with CL in vitro. However neither GABARAP nor GABARAPL2 were translocated to mitochondria in rotenone-treated U87MG cells. Thus the various human Atg8 orthologs might play specific roles in different autophagic processes.  相似文献   

5.
The cysteine protease ATG4B cleaves off one or more C-terminal residues of the inactive proform of proteins of the ortholog and paralog LC3 and GABARAP subfamilies of yeast Atg8 to expose a C-terminal glycine that is conjugated to phosphatidylethanolamine during autophagosome formation. We show that ATG4B contains a C-terminal LC3-interacting region (LIR) motif important for efficient binding to and cleavage of LC3 and GABARAP proteins. We solved the crystal structures of the GABARAPL1-ATG4B C-terminal LIR complex. Analyses of the structures and in vitro binding assays, using specific point mutants, clearly showed that the ATG4B LIR binds via electrostatic-, aromatic HP1 and hydrophobic HP2 pocket interactions. Both these interactions and the catalytic site-substrate interaction contribute to binding between LC3s or GABARAPs and ATG4B. We also reveal an unexpected role for ATG4B in stabilizing the unlipidated forms of GABARAP and GABARAPL1. In mouse embryonic fibroblast (MEF) atg4b knockout cells, GABARAP and GABARAPL1 were unstable and degraded by the proteasome. Strikingly, the LIR motif of ATG4B was required for stabilization of the unlipidated forms of GABARAP and GABARAPL1 in cells.  相似文献   

6.
《Autophagy》2013,9(11):1302-1307
Atg8 is a yeast protein involved in the autophagic process and in particular in the elongation of autophagosomes. In mammals, several orthologs have been identified and are classed into two subfamilies: the LC3 subfamily and the GABARAP subfamily, referred to simply as the LC3 or GABARAP families. GABARAPL1 (GABARAP-like protein 1), one of the proteins belonging to the GABARAP (GABAA receptor-associated protein) family, is highly expressed in the central nervous system and implicated in processes such as receptor and vesicle transport as well as autophagy. The proteins that make up the GABARAP family demonstrate conservation of their amino acid sequences and protein structures. In humans, GABARAPL1 shares 86% identity with GABARAP and 61% with GABARAPL2 (GATE-16). The identification of the individual proteins is thus very limited when working in vivo due to a lack of unique peptide sequences from which specific antibodies can be developed. Actually, and to our knowledge, there are no available antibodies on the market that are entirely specific to GABARAPL1 and the same may be true of the anti-GABARAP antibodies. In this study, we sought to examine the specificity of three antibodies targeted against different peptide sequences within GABARAPL1: CHEM-CENT (an antibody raised against a short peptide sequence within the center of the protein), PTG-NTER (an antibody raised against the N-terminus of the protein) and PTG-FL (an antibody raised against the full-length protein). The results described in this article demonstrate the importance of testing antibody specificity under the conditions for which it will be used experimentally, a caution that should be taken when studying the expression of the GABARAP family proteins.  相似文献   

7.
Atg8 is a yeast protein involved in the autophagic process and in particular in the elongation of autophagosomes. In mammals, several orthologs have been identified and are classed into two subfamilies: the LC3 subfamily and the GABARAP subfamily, referred to simply as the LC3 or GABARAP families. GABARAPL1 (GABARAP-like protein 1), one of the proteins belonging to the GABARAP (GABA(A) receptor-associated protein) family, is highly expressed in the central nervous system and implicated in processes such as receptor and vesicle transport as well as autophagy. The proteins that make up the GABARAP family demonstrate conservation of their amino acid sequences and protein structures. In humans, GABARAPL1 shares 86% identity with GABARAP and 61% with GABARAPL2 (GATE-16). The identification of the individual proteins is thus very limited when working in vivo due to a lack of unique peptide sequences from which specific antibodies can be developed. Actually, and to our knowledge, there are no available antibodies on the market that are entirely specific to GABARAPL1 and the same may be true of the anti-GABARAP antibodies. In this study, we sought to examine the specificity of three antibodies targeted against different peptide sequences within GABARAPL1: CHEM-CENT (an antibody raised against a short peptide sequence within the center of the protein), PTG-NTER (an antibody raised against the N-terminus of the protein) and PTG-FL (an antibody raised against the full-length protein). The results described in this article demonstrate the importance of testing antibody specificity under the conditions for which it will be used experimentally, a caution that should be taken when studying the expression of the GABARAP family proteins.  相似文献   

8.
ABSTRACT

Short linear motifs, known as LC3-interacting regions (LIRs), interact with mactoautophagy/autophagy modifiers (Atg8/LC3/GABARAP proteins) via a conserved universal mechanism. Typically, this includes the occupancy of 2 hydrophobic pockets on the surface of Atg8-family proteins by 2 specific aromatic and hydrophobic residues within the LIR motifs. Here, we describe an alternative mechanism of Atg8-family protein interaction with the non-canonical UBA5 LIR, an E1-like enzyme of the ufmylation pathway that preferentially interacts with GABARAP but not LC3 proteins. By solving the structures of both GABARAP and GABARAPL2 in complex with the UBA5 LIR, we show that in addition to the binding to the 2 canonical hydrophobic pockets (HP1 and HP2), a conserved tryptophan residue N-terminal of the LIR core sequence binds into a novel hydrophobic pocket on the surface of GABARAP proteins, which we term HP0. This mode of action is unique for UBA5 and accompanied by large rearrangements of key residues including the side chains of the gate-keeping K46 and the adjacent K/R47 in GABARAP proteins. Swapping mutations in LC3B and GABARAPL2 revealed that K/R47 is the key residue in the specific binding of GABARAP proteins to UBA5, with synergetic contributions of the composition and dynamics of the loop L3. Finally, we elucidate the physiological relevance of the interaction and show that GABARAP proteins regulate the localization and function of UBA5 on the endoplasmic reticulum membrane in a lipidation-independent manner.

Abbreviations: ATG: AuTophaGy-related; EGFP: enhanced green fluorescent protein; GABARAP: GABA-type A receptor-associated protein; ITC: isothermal titration calorimetry; KO: knockout; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; NMR: nuclear magnetic resonance; RMSD: root-mean-square deviation of atomic positions; TKO: triple knockout; UBA5: ubiquitin like modifier activating enzyme 5  相似文献   

9.
10.
Hana Popelka 《Autophagy》2018,14(11):1847-1849
The Atg8/LC3/GABARAP family of proteins binds its physiological binding partners, which function in macroautophagy (hereafter autophagy), via recognition of their short linear motif, also known as the LC3-interactiong region (LIR) or Atg8-interacting motif (AIM). The AIM/LIR motif, with the consensus sequence [W/F/Y]xx[L/I/V], utilizes the aromatic and hydrophobic residues that bind on the surface of Atg8/LC3/GABARAP. Despite modest binding affinity, this interaction is essential for efficient autophagy. Here we highlight the recent paper by Li and collaborators who discovered the structural basis for a much stronger interaction between the LIR motif-containing peptides and LC3/GABARAP. Moreover, they showed that these peptides are potent and selective inhibitors of autophagy in cultured cells and in C. elegans.  相似文献   

11.
It has been widely assumed that Atg8 family LC3/GABARAP proteins are essential for the formation of autophagosomes during macroautophagy/autophagy, and the sequestration of cargo during selective autophagy. However, there is little direct evidence on the functional contribution of these proteins to autophagosome biogenesis in mammalian cells. To dissect the functions of LC3/GABARAPs during starvation-induced autophagy and PINK1-PARK2/Parkin-dependent mitophagy, we used CRISPR/Cas9 gene editing to generate knockouts of the LC3 and GABARAP subfamilies, and all 6 Atg8 family proteins in HeLa cells. Unexpectedly, the absence of all LC3/GABARAPs did not prevent the formation of sealed autophagosomes, or selective engulfment of mitochondria during PINK1-PARK2-dependent mitophagy. Despite not being essential for autophagosome formation, the loss of LC3/GABARAPs affected both autophagosome size, and the efficiency at which they are formed. However, the critical autophagy defect in cells lacking LC3/GABARAPs was failure to drive autophagosome-lysosome fusion. Relative to the LC3 subfamily, GABARAPs were found to play a prominent role in autophagosome-lysosome fusion and recruitment of the adaptor protein PLEKHM1. Our work clarifies the essential contribution of Atg8 family proteins to autophagy in promoting autolysosome formation, and reveals the GABARAP subfamily as a key driver of starvation-induced autophagy and PINK1-PARK2-dependent mitophagy. Since LC3/GABARAPs are not essential for mitochondrial cargo sequestration, we propose an additional mechanism of selective autophagy. The model highlights the importance of ubiquitin signals and autophagy receptors for PINK-PARK2-mediated selectivity rather than Atg8 family-LIR-mediated interactions.  相似文献   

12.
《Autophagy》2013,9(7):961-963
The knowledge of the molecular mechanisms underlying autophagy has considerably improved after the isolation and characterization of autophagy-defective mutants in the yeast Saccharomyces cerevisiae. Two ubiquitin-like conjugation systems are required for yeast autophagy. One of them requires the participation of Atg8 synthesized as a precursor protein, which is cleaved after a Gly residue by a cysteine proteinase called Atg4. The new Gly-terminal residue from Atg8 is activated by Atg7 (an E1-like enzyme) then transferred to Atg3 (an E2-like enzyme) and finally conjugated with membrane-bound phosphatidylethanolamine (PE) through an amide bond. The complex Atg8–PE is also deconjugated by the protease Atg4, facilitating the release of Atg8 from membranes. This modification system, which is essential for the membrane rearrangement dynamics that accompany the initiation and execution of autophagy, is conserved in higher eukaryotes including mammals. We have previously identified and cloned the four human orthologues of the yeast proteinase Atg4, whereas parallel studies have revealed that there are at least six orthologues of yeast Atg8 in mammals (LC3A, LC3B, LC3C, GABARAP, ATG8L/GABARAPL1 and GATE-16/GABARAPL2). Thus, in mammals, the Atg4-Atg8 proteolytic system is composed of four proteinases (autophagins) that may target at least six distinct substrates, contrasting with the simplified yeast system in which one single protease cleaves a sole substrate. Currently, it is unclear why mammals have developed this array of closely related enzymes, as other essential autophagy genes such as Atg3, Atg5 or Atg7 are represented in mammalian cells by a single orthologue. It has been suggested that the multiplication of Atg4 orthologues may reflect a regulatory heterogeneity of functionally redundant proteins or, alternatively, derive from the acquisition of new functions that are not related to autophagy. Our first approach to elucidate this question was based on the generation of autophagin-3/Atg4C-deficient mice, which however presented a minor phenotype. With the generation of autophagin-1/Atg4B-deficient mice, recently reported, we have progressed in our attempt to identify the in vivo physiological and pathological roles of autophagins.  相似文献   

13.
《Autophagy》2013,9(6):758-765
The serine/threonine kinase Atg1 plays an essential role downstream of TOR for the regulation of autophagy. In yeast, where Atg1 was first identified, a complex regulatory mechanism has been described that includes at least seven other interacting proteins and a phosphorylation-dependent switch. Recent findings confirm that the mammalian Atg1 homologues ULK1 and 2 have autophagy regulatory roles. However, we and others have also demonstrated mechanistic differences with the yeast model and between these two Atg1 family members. Here, we elaborate on our growing understanding of Atg1 function, incorporating findings from yeast, C. elegans, D. melanogaster and mammalian cells. We propose that through evolution, Atg1 proteins have adopted additional cellular functions and regulatory mechanisms, which could involve multiple gene family isoforms working within multi-functional protein complexes. The gene family expansion observed in higher eukaryotes might reflect an increased functional diversity of Atg1 proteins in cell growth, differentiation and survival.  相似文献   

14.
Autophagy-related (Atg) proteins are eukaryotic factors participating in various stages of the autophagic process. Thus far 34 Atgs have been identified in yeast, including the key autophagic protein Atg8. The Atg8 gene family encodes ubiquitin-like proteins that share a similar structure consisting of two amino-terminal α helices and a ubiquitin-like core. Atg8 family members are expressed in various tissues, where they participate in multiple cellular processes, such as intracellular membrane trafficking and autophagy. Their role in autophagy has been intensively studied. Atg8 proteins undergo a unique ubiquitin-like conjugation to phosphatidylethanolamine on the autophagic membrane, a process essential for autophagosome formation. Whereas yeast has a single Atg8 gene, many other eukaryotes contain multiple Atg8 orthologs. Atg8 genes of multicellular animals can be divided, by sequence similarities, into three subfamilies: microtubule-associated protein 1 light chain 3 (MAP1LC3 or LC3), γ-aminobutyric acid receptor-associated protein (GABARAP) and Golgi-associated ATPase enhancer of 16 kDa (GATE-16), which are present in sponges, cnidarians (such as sea anemones, corals and hydras) and bilateral animals. Although genes from all three subfamilies are found in vertebrates, some invertebrate lineages have lost the genes from one or two subfamilies. The amino terminus of Atg8 proteins varies between the subfamilies and has a regulatory role in their various functions. Here we discuss the evolution of Atg8 proteins and summarize the current view of their function in intracellular trafficking and autophagy from a structural perspective.  相似文献   

15.
Autophagy is a highly conserved degradative pathway, essential for cellular homeostasis and implicated in diseases including cancer and neurodegeneration. Autophagy-related 8 (ATG8) proteins play a central role in autophagosome formation and selective delivery of cytoplasmic cargo to lysosomes by recruiting autophagy adaptors and receptors. The LC3-interacting region (LIR) docking site (LDS) of ATG8 proteins binds to LIR motifs present in autophagy adaptors and receptors. LIR-ATG8 interactions can be highly selective for specific mammalian ATG8 family members (LC3A-C, GABARAP, and GABARAPL1-2) and how this specificity is generated and regulated is incompletely understood.We have identified a LIR motif in the Golgi protein SCOC (short coiled-coil protein) exhibiting strong binding to GABARAP, GABARAPL1, LC3A and LC3C. The residues within and surrounding the core LIR motif of the SCOC LIR domain were phosphorylated by autophagy-related kinases (ULK1-3, TBK1) increasing specifically LC3 family binding. More distant flanking residues also contributed to ATG8 binding. Loss of these residues was compensated by phosphorylation of serine residues immediately adjacent to the core LIR motif, indicating that the interactions of the flanking LIR regions with the LDS are important and highly dynamic.Our comprehensive structural, biophysical and biochemical analyses support and provide novel mechanistic insights into how phosphorylation of LIR domain residues regulates the affinity and binding specificity of ATG8 proteins towards autophagy adaptors and receptors.  相似文献   

16.
Recognition of human autophagy-related 8 (hATG8) proteins by autophagy receptors represents a critical step within this cellular quality control system. Autophagy impairment is known to be a pathogenic mechanism in the motor neuron disorder amyotrophic lateral sclerosis (ALS). Overlapping but specific roles of hATG8 proteins belonging to the LC3 and GABARAP subfamilies are incompletely understood, and binding selectivity is typically overlooked. We previously showed that an ALS-associated variant of the SQSTM1/p62 (p62) autophagy receptor bearing an L341V mutation within its ATG8-interacting motif (AIM) impairs recognition of LC3B in vitro, yielding an autophagy-deficient phenotype. Improvements in understanding of hATG8 recognition by AIMs now distinguish LC3-interaction and GABARAP-interaction motifs and predict the effects of L341V substitution may extend beyond loss of function to biasing AIM binding preference. Through biophysical analyses, we confirm impaired binding of the L341V-AIM mutant to LC3A, LC3B, GABARAP, and GABARAPL1. In contrast, p62 AIM interactions with LC3C and GABARAPL2 are unaffected by this mutation. Isothermal titration calorimetry and NMR investigations provided insights into the entropy-driven GABARAPL2/p62 interaction and how the L341V mutation may be tolerated. Competition binding demonstrated reduced association of the L341V-AIM with one hATG8 manifests as a relative increase in association with alternate hATG8s, indicating effective reprogramming of hATG8 selectivity. These data highlight how a single AIM peptide might compete for binding with different hATG8s and suggest that the L341V-AIM mutation may be neomorphic, representative of a disease mechanism that likely extends into other human disorders.  相似文献   

17.
Autophagy is a lysosome‐dependent degradation pathway essential to maintain cellular homeostasis. Therefore, either defective or excessive autophagy may be detrimental for cells and tissues. The past decade was characterized by significant advances in molecular dissection of stimulatory autophagy inputs; however, our understanding of the mechanisms that restrain autophagy is far from complete. Here, we describe a negative feedback mechanism that limits autophagosome biogenesis based on the selective autophagy‐mediated degradation of ATG13, a component of the ULK1 autophagy initiation complex. We demonstrate that the centrosomal protein OFD1 acts as bona fide autophagy receptor for ATG13 via direct interaction with the Atg8/LC3/GABARAP family of proteins. We also show that patients with Oral‐Facial‐Digital type I syndrome, caused by mutations in the OFD1 gene, display excessive autophagy and that genetic inhibition of autophagy in a mouse model of the disease, significantly ameliorates polycystic kidney, a clinical manifestation of the disorder. Collectively, our data report the discovery of an autophagy self‐regulated mechanism and implicate dysregulated autophagy in the pathogenesis of renal cystic disease in mammals.  相似文献   

18.
Autophagy is an intracellular bulk degradation process involved in cell survival upon stress induction, but also with a newly identified function in myeloid differentiation. The autophagy-related (ATG)8 protein family, including the GABARAP and LC3 subfamilies, is crucial for autophagosome biogenesis. In order to evaluate the significance of the GABARAPs in the pathogenesis of acute myeloid leukemia (AML), we compared their expression in primary AML patient samples, CD34+ progenitor cells and in granulocytes from healthy donors. GABARAPL1 and GABARAPL2/GATE-16, but not GABARAP, were significantly downregulated in particular AML subtypes compared to normal granulocytes. Moreover, the expression of GABARAPL1 and GATE-16 was significantly induced during ATRA-induced neutrophil differentiation of acute promyelocytic leukemia cells (APL). Lastly, knocking down GABARAPL2/GATE-16 in APL cells attenuatedneutrophil differentiation and decreased autophagic flux. In conclusion, low GABARAPL2/GATE-16 expression is associated with an immature myeloid leukemic phenotype and these proteins are necessary for neutrophil differentiation of APL cells.  相似文献   

19.
Glycogen, a branched polymer of glucose, acts as an intracellular carbon and energy reserve in many tissues and cell types. An important pathway for its degradation is by transport to lysosomes in an autophagy-like process. It has been proposed that starch-binding domain-containing protein 1 (Stbd1) may participate in this mechanism by anchoring glycogen to intracellular membranes. In addition, Stbd1 has been reported to interact with a known autophagy protein, GABARAPL1, a member of the Atg8 family. Here, we confirm this interaction and identify an Atg8 interacting motif (AIM) in Stbd1 necessary for GABARAPL1 binding as judged by co-immunoprecipitation from cell extracts and co-localization in cells as evidenced by immunofluorescence microscopy. The AIM sequence of Stbd1 200HEEWEMV206 lies within a predicted disordered region of the molecule and fits the consensus of other AIM sequences in cargo-specifying proteins such as p62 and Nix. Mutation of the AIM, including single point mutations of either W203 or V206, eliminated the co-localization of Stbd1 with both over-expressed and endogenous GABARAPL1. Stbd1 may therefore function as a novel cargo binding protein that delivers glycogen to lysosomes in an autophagic pathway that could be termed “glycophagy”.  相似文献   

20.
Autophagy is a unique intracellular protein degradation system accompanied by autophagosome formation. Besides its important role through bulk degradation in supplying nutrients, this system has an ability to degrade certain proteins, organelles, and invading bacteria selectively to maintain cellular homeostasis. In yeasts, Atg8p plays key roles in both autophagosome formation and selective autophagy based on its membrane fusion property and interaction with autophagy adaptors/specific substrates. In contrast to the single Atg8p in yeast, mammals have 6 homologs of Atg8p comprising LC3 and GABARAP families. However, it is not clear these two families have different or similar functions. The aim of this study was to determine the separate roles of LC3 and GABARAP families in basal/constitutive and/or selective autophagy. While the combined knockdown of LC3 and GABARAP families caused a defect in long-lived protein degradation through lysosomes, knockdown of each had no effect on the degradation. Meanwhile, knockdown of LC3B but not GABARAPs resulted in significant accumulation of p62/Sqstm1, one of the selective substrate for autophagy. Our results suggest that while mammalian Atg8 homologs are functionally redundant with regard to autophagosome formation, selective autophagy is regulated by specific Atg8 homologs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号