首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Import-Karyopherin or Importin proteins bind nuclear localization signals (NLSs) to mediate the import of proteins into the cell nucleus. Karyopherin β2 or Kapβ2, also known as Transportin, is a member of this transporter family responsible for the import of numerous RNA binding proteins. Kapβ2 recognizes a targeting signal termed the PY-NLS that lies within its cargos to target them through the nuclear pore complex. The recognition of PY-NLS by Kapβ2 is conserved throughout eukaryotes. Kap104, the Kapβ2 homolog in Saccharomyces cerevisiae, recognizes PY-NLSs in cargos Nab2, Hrp1, and Tfg2. We have determined the crystal structure of Kapβ2 bound to the PY-NLS of the mRNA processing protein Nab2 at 3.05-Å resolution. A seven-residue segment of the PY-NLS of Nab2 is observed to bind Kapβ2 in an extended conformation and occupies the same PY-NLS binding site observed in other Kapβ2·PY-NLS structures.  相似文献   

2.
Our previous studies have focused on a family of Saccharomyces cerevisiae nuclear pore complex (NPC) proteins that contain domains composed of repetitive tetrapeptide glycine-leucine-phenylalanine-glycine (GLFG) motifs. We have previously shown that the GLFG regions of Nup116p and Nup100p directly bind the karyopherin transport factor Kap95p during nuclear protein import. In this report, we have further investigated potential roles for the GLFG region in mRNA export. The subcellular localizations of green fluorescent protein (GFP)-tagged mRNA transport factors were individually examined in yeast cells overexpressing the Nup116-GLFG region. The essential mRNA export factors Mex67-GFP, Mtr2-GFP, and Dbp5-GFP accumulated in the nucleus. In contrast, the localizations of Gle1-GFP and Gle2-GFP remained predominantly associated with the NPC, as in wild type cells. The localization of Kap95p was also not perturbed with GLFG overexpression. Coimmunoprecipitation experiments from yeast cell lysates resulted in the isolation of a Mex67p-Nup116p complex. Soluble binding assays with bacterially expressed recombinant proteins confirmed a direct interaction between Mex67p and the Nup116-GLFG or Nup100-GLFG regions. Mtr2p was not required for in vitro binding of Mex67p to the GLFG region. To map the Nup116-GLFG subregion(s) required for Kap95p and/or Mex67p association, yeast two-hybrid analysis was used. Of the 33 Nup116-GLFG repeats that compose the domain, a central subregion of nine GLFG repeats was sufficient for binding either Kap95p or Mex67p. Interestingly, the first 12 repeats from the full-length region only had a positive interaction with Mex67p, whereas the last 12 were only positive with Kap95p. Thus, the GLFG domain may have the capacity to bind both karyopherins and an mRNA export factor simultaneously. Taken together, our in vivo and in vitro results define an essential role for a direct Mex67p-GLFG interaction during mRNA export.  相似文献   

3.
4.
We have identified a novel human karyopherin (Kap) beta family member that is related to human Crm1 and the Saccharomyces cerevisiae protein, Msn5p/Kap142p. Like other known transport receptors, this Kap binds specifically to RanGTP, interacts with nucleoporins, and shuttles between the nuclear and cytoplasmic compartments. We report that interleukin enhancer binding factor (ILF)3, a double-stranded RNA binding protein, associates with this Kap in a RanGTP-dependent manner and that its double-stranded RNA binding domain (dsRBD) is the limiting sequence required for this interaction. Importantly, the Kap interacts with dsRBDs found in several other proteins and binding is blocked by double-stranded RNA. We find that the dsRBD of ILF3 functions as a novel nuclear export sequence (NES) in intact cells, and its ability to serve as an NES is dependent on the expression of the Kap. In digitonin-permeabilized cells, the Kap but not Crm1 stimulated nuclear export of ILF3. Based on the ability of this Kap to mediate the export of dsRNA binding proteins, we named the protein exportin-5. We propose that exportin-5 is not an RNA export factor but instead participates in the regulated translocation of dsRBD proteins to the cytoplasm where they interact with target mRNAs.  相似文献   

5.
Hsp104 is a molecular chaperone in yeast that restores solubility and activity to inactivated proteins after severe heat shock. We investigated the mechanisms that influence Hsp104 subcellular distribution in both unstressed and heat-shocked cells. In unstressed cells, Hsp104 and a green fluorescent protein-Hsp104 fusion protein were detected in both the nucleus and the cytoplasm. We demonstrate that a 17-amino-acid sequence of Hsp104 nuclear localization sequence 17 (NLS17) is sufficient to target a reporter molecule to the nucleus and is also necessary for normal Hsp104 subcellular distribution. The nuclear targeting function of NLS17 is genetically dependent on KAP95 and KAP121. In addition, wild-type Hsp104, but not an NLS17-mutated Hsp104 variant, accumulated in the nucleus of cells depleted for the general export factor Xpo1. Interestingly, severe, nonlethal heat shock enhances the nuclear levels of Hsp104 in an NLS17-independent manner. Under these conditions, we demonstrate that karyopherin-mediated nuclear transport is impaired, while the integrity of the nuclear-cytoplasmic barrier remains intact. Based on these observations, we propose that Hsp104 continues to access the nucleus during severe heat shock using a karyopherin-independent mechanism.  相似文献   

6.
The vertebrate nuclear pore complex (NPC) harbors an approximately 10-nm diameter diffusion channel that is large enough to admit 50-kD polypeptides. We have analyzed the permeability properties of the Saccharomyces cerevisiae nuclear envelope (NE) using import (NLS) and export (NES) signal-containing green fluorescent protein (GFP) reporters. Compared with wild-type, passive export rates of a classical karyopherin/importin (Kap) Kap60p/Kap95p-targeted NLS-GFP reporter (cNLS-GFP) were significantly faster in nup188-Delta and nup170-Delta cells. Similar results were obtained using two other NLS-GFP reporters, containing either the Kap104p-targeted Nab2p NLS (rgNLS) or the Kap121p-targeted Pho4p NLS (pNLS). Elevated levels of Hsp70 stimulated cNLS-GFP import, but had no effect on the import of rgNLS-GFP. Thus, the role of Hsp70 in NLS-directed import may be NLS- or targeting pathway-specific. Equilibrium sieving limits for the diffusion channel were assessed in vivo using NES-GFP reporters of 36-126 kD and were found to be greater than wild-type in nup188-Delta and nup170-Delta cells. We propose that Nup170p and Nup188p are involved in establishing the functional resting diameter of the NPC's central transport channel.  相似文献   

7.
Proteins destined for import into the nucleus contain nuclear localization signals (NLSs) that are recognized by import receptors termed karyopherins or importins. Until recently, the only nuclear import sequence that had been well defined and characterized was the classical NLS (cNLS), which is recognized by importin alpha. However, Chook and coworkers (Lee, B. J., Cansizoglu, A. E., Süel, K. E., Louis, T. H., Zhang, Z., and Chook, Y. M. (2006) Cell 126, 543-558) have provided new insight into nuclear targeting with their identification of a novel NLS, termed the PY-NLS, that is recognized by the human karyopherin beta2/transportin (Kapbeta2) receptor. Here, we demonstrate that the PY-NLS is conserved in Saccharomyces cerevisiae and show for the first time that the PY-NLS is a functional nuclear targeting sequence in vivo. The apparent ortholog of Kapbeta2 in yeast, Kap104, has two known cargos, the mRNA-binding proteins Hrp1 and Nab2, which both contain putative PY-NLS-like sequences. We find that the PY-NLS-like sequence within Hrp1, which closely matches the PY-NLS consensus, is both necessary and sufficient for nuclear import and is also required for receptor binding and protein function. In contrast, the PY-NLS-like sequences in Nab2, which vary from the PY-NLS consensus, are not required for proper import or protein function, suggesting that Kap104 may interact with different cargos using multiple mechanisms. Dissection of the PY-NLS consensus reveals that the minimal PY-NLS in yeast consists of the C-terminal portion of the human consensus, R/H/KX(2-5)PY, with upstream basic or hydrophobic residues enhancing the targeting function. Finally, we apply this analysis to a bioinformatic search of the yeast proteome as a preliminary search for new potential Kap104 cargos.  相似文献   

8.
Picornaviruses are small RNA viruses that hijack host cell machinery to promote their replication. During infection, these viruses express two proteases, 2Apro and 3Cpro, which process viral proteins. They also subvert a number of host functions, including innate immune responses, host protein synthesis, and intracellular transport, by utilizing poorly understood mechanisms for rapidly and specifically targeting critical host proteins. Here, we used proteomic tools to characterize 2Apro interacting partners, functions, and targeting mechanisms. Our data indicate that, initially, 2Apro primarily targets just two cellular proteins: eukaryotic translation initiation factor eIF4G (a critical component of the protein synthesis machinery) and Nup98 (an essential component of the nuclear pore complex, responsible for nucleocytoplasmic transport). The protease appears to employ two different cleavage mechanisms; it likely interacts with eIF3L, utilizing the eIF3 complex to proteolytically access the eIF4G protein but also directly binds and degrades Nup98. This Nup98 cleavage results in only a marginal effect on nuclear import of proteins, while nuclear export of proteins and mRNAs were more strongly affected. Collectively, our data indicate that 2Apro selectively inhibits protein translation, key nuclear export pathways, and cellular mRNA localization early in infection to benefit viral replication at the expense of particular cell functions.  相似文献   

9.
The nuclear import of proteins bearing a basic nuclear localization signal (NLS) is dependent on karyopherin α/importin α, which acts as the NLS receptor, and karyopherin β1/importin β, which binds karyopherin α and mediates the nuclear import of the resultant ternary complex. Recently, a second nuclear import pathway that allows the rapid reentry into the nucleus of proteins that participate in the nuclear export of mature mRNAs has been identified. In mammalian cells, a single NLS specific for this alternate pathway, the M9 NLS of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), has been described. The M9 NLS binds a transport factor related to karyopherin β1, termed karyopherin β2 or transportin, and does not require a karyopherin α-like adapter protein. A yeast homolog of karyopherin β2, termed Kap104p, has also been described and proposed to play a role in the nuclear import of a yeast hnRNP-like protein termed Nab2p. Here, we define a Nab2p sequence that binds to Kap104p and that functions as an NLS in both human and yeast cells despite lacking any evident similarity to basic or M9 NLSs. Using an in vitro nuclear import assay, we demonstrate that Kap104p can direct the import into isolated human cell nuclei of a substrate containing a wild-type, but not a defective mutant, Nab2p NLS. In contrast, other NLSs, including the M9 NLS, could not function as substrates for Kap104p. Surprisingly, this in vitro assay also revealed that human karyopherin β1, but not the Kap104p homolog karyopherin β2, could direct the efficient nuclear import of a Nab2p NLS substrate in vitro in the absence of karyopherin α. These data therefore identify a novel NLS sequence, active in both yeast and mammalian cells, that is functionally distinct from both basic and M9 NLS sequences.  相似文献   

10.
In all eukaryotic organisms, messenger RNA (mRNA) is synthesized in the nucleus and then exported to the cytoplasm for translation. The export reaction requires the concerted action of a large number of protein components, including a set of shuttle proteins that can exit and re-enter the nucleus through the nuclear pore complex. Here, we show that, in Saccharomyces cerevisiae, the shuttle protein Npl3p leaves the nuclear pore complex entirely and continues to function in the cytoplasm. A mutation at position 219 in its RNA-binding domain leaves Npl3p lingering in the cytoplasm associated with polysomes. Yeast cells expressing the mutant Npl3(L-219S) protein show alterations in mRNA stability that can affect protein synthesis. As a result, defects in nascent polypeptide targeting to subcellular compartments such as the mitochondria are also suppressed.  相似文献   

11.
12.
The retroviral Gag polyprotein orchestrates the assembly and release of virus particles from infected cells. We previously reported that nuclear transport of the Rous sarcoma virus (RSV) Gag protein is intrinsic to the virus assembly pathway. To identify cis- and trans-acting factors governing nucleocytoplasmic trafficking, we developed novel vectors to express regions of Gag in Saccharomyces cerevisiae. The localization of Gag proteins was examined in the wild type and in mutant strains deficient in members of the importin-beta family. We confirmed the Crm1p dependence of the previously identified Gag p10 nuclear export signal. The known nuclear localization signal (NLS) in MA (matrix) was also functional in S. cerevisiae, and additionally we discovered a novel NLS within the NC (nucleocapsid) domain of Gag. MA utilizes Kap120p and Mtr10p import receptors while nuclear entry of NC involves the classical importin-alpha/beta (Kap60p/95p) pathway. NC also possesses nuclear targeting activity in avian cells and contains the primary signal for the import of the Gag polyprotein. Thus, the nucleocytoplasmic dynamics of RSV Gag depend upon the counterbalance of Crm1p-mediated export with two independent NLSs, each interacting with distinct nuclear import factors.  相似文献   

13.
During nuclear import, cytosolic transport factors move through the nuclear pore complex (NPC) to the nuclear compartment. Kap95p is required during import for docking the nuclear localization signal-receptor and ligand to the NPC. Recycling of this factor back to the cytoplasm is necessary for continued rounds of import; however, the mechanism for Kap95p recycling is unknown. We have determined that recycling of Kap95p requires a nuclear export signal (NES). A region containing the NES in Kap95p was sufficient to mediate active nuclear export in a microinjection assay. Moreover, the NES was necessary for function. Mutation of the NES in Kap95p resulted in a temperaturesensitive import mutant, and immunofluorescence microscopy experiments showed that the mutated Kap95p was not recycled but instead localized in the nucleus and at the nuclear envelope. Srp1p, the yeast nuclear localization signal-receptor, also accumulated in the nuclei of the arrested kap95 mutant cells. Wild-type and NES-mutated Kap95p both bound Gsp1p (the yeast Ran/TC4 homologue), Srp1p, and the FXFG repeat region of the nucleoporin Nup1p. In contrast, the NES mutation abolished Kap95p interaction with the GLFG repeat regions from the nucleoporins Nup116p and Nup100p. In vivo interaction was demonstrated by isolation of Kap95p from yeast nuclear lysates in either protein A–tagged Nup116p or protein A–tagged Nup100p complexes. The protein A–tagged Nup116p complex also specifically contained Gle2p. These results support a model in which a step in the recycling of Kap95p is mediated by interaction of an NES with GLFG regions. Analysis of genetic interactions suggests Nup116p has a primary role in Kap95p recycling, with Nup100p compensating in the absence of Nup116p. This finding highlights an important role for a subfamily of GLFG nucleoporins in nuclear export processes.  相似文献   

14.
15.
Despite thorough structure-function analyses, it remains unclear how CapG, a ubiquitous F-actin barbed end capping protein that controls actin microfilament turnover in cells, is able to reside in the nucleus and cytoplasm, whereas structurally related actin-binding proteins are predominantly cytoplasmic. Here we report the molecular basis for the different subcellular localization of CapG, severin, and fragminP. Green fluorescent protein-tagged fragminP and severin accumulate in the nucleus upon treatment of transfected cells with the CRM1 inhibitor leptomycin B. We identified a nuclear export sequence in severin and fragminP, which is absent in CapG. Deletion of amino acids Met(1)-Leu(27) resulted in nuclear accumulation of severin and fragminP. Tagging this sequence to CapG triggered nuclear export, whereas mutation of single leucine residues (Leu(17), Leu(21), and Leu(27)) in the export sequence inhibited nuclear export. Based on these findings, a nuclear export signal was identified in myopodin, a muscle-specific actin-binding protein, and the Bloom syndrome protein, a RecQ-like helicase. Deletion of the myopodin nuclear export sequence blocked invasion into collagen type I of C2C12 cells transiently overexpressing myopodin. Our findings explain regulated subcellular targeting of distinct classes of actin-binding proteins.  相似文献   

16.
17.
In eukaryotic cells, the nuclear membrane creates a barrier between the nucleus and the cytoplasm. Whereas RNA synthesis occurs in the nucleus, they mostly function in the cytoplasm; thus export of RNA molecules from the nucleus to the cytoplasm is indispensable for normal function of the cells. The molecular mechanisms involved in each kind of cellular RNA export is gradually understood. The focus of this review will be mRNA export. mRNAs are multiformed. In order to ensure that this variety of mRNA molecules are all exported, cells are probably equipped with multiple export pathways. A number of proteins is predicted to be involved in mRNA export. Ascertaining which proteins play crucial roles in the pathways is the key point in the study of mRNA export.  相似文献   

18.
Nucleo-cytoplasmic transport of proteins is mostly mediated by specific interaction between transport receptors of the importin beta family and signal sequences present in their cargo. While several signal sequences, in particular the classical nuclear localization signal (NLS) recognized by the heterodimeric importin alpha/beta complex are well known, the signals recognized by other importin beta-like transport receptors remain to be characterized in detail. Here we present the systematic analysis of the nuclear import of Saccharomyces cerevisiae Asr1p, a nonessential alcohol-responsive Ring/PHD finger protein that shuttles between nucleus and cytoplasm but accumulates in the nucleus upon alcohol stress. Nuclear import of Asr1p is constitutive and mediated by its C-terminal domain. A short sequence comprising residues 243-280 is sufficient and necessary for active targeting to the nucleus. Moreover, the nuclear import signal is conserved from yeast to mammals. In vitro, the nuclear localization signal of Asr1p directly interacts with the importins Kap114p, Kap95p, Pse1p, Kap123p, or Kap104p, interactions that are sensitive to the presence of RanGTP. In vivo, these importins cooperate in nuclear import. Interestingly, the same importins mediate nuclear transport of histone H2A. Based on mutational analysis and sequence comparison with a region mediating nuclear import of histone H2A, we identified a novel type of NLS with the consensus sequence R/KxxL(x)(n)V/YxxV/IxK/RxxxK/R that is recognized by five yeast importins and connects them into a highly efficient network for nuclear import of proteins.  相似文献   

19.
20.
Thakurta AG  Gopal G  Yoon JH  Kozak L  Dhar R 《The EMBO journal》2005,24(14):2512-2523
The breast cancer tumor suppressor BRCA2-interacting protein, DSS1, and its homologs are critical for DNA recombination in eukaryotic cells. We found that Dss1p, along with Mlo3p and Uap56p, Schizosaccharomyces pombe homologs of two messenger RNA (mRNA) export factors of the NXF-NXT pathway, is required for mRNA export in S. pombe. Previously, we showed that the nuclear pore-associated Rae1p is an essential mRNA export factor in S. pombe. Here, we show that Dss1p and Uap56p function by linking mRNA adapter Mlo3p to Rae1p for targeting mRNA-protein complex (mRNP) to the proteins of the nuclear pore complex (NPC). Dss1p preferentially recruits to genes in vivo and interacts with -FG (phenylalanine glycine) nucleoporins in vivo and in vitro. Thus, Dss1p may function at multiple steps of mRNA export, from mRNP biogenesis to their targeting and translocation through the NPC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号