首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cell surface membranes are generally considered as inert and hydrophobic providing a stable physical barrier that anchor proteins and maintain cellular homeostasis between the intra- and the extra-cellular environment. The integral proteins that transverse membranes do so once or multiple times and can function alone or as part of a larger complex. Far from being inert, there is a multiplicity of biophysical factors that drive protein-protein and protein-lipid interactions within membranes that are being increasingly recognised as very important for cellular function. Unravelling these “hot-spots” on the contact surface of transmembrane (TM) proteins and targeting peptides to these sites to interrupt the cohesive interaction between the proteins provides both an enormous challenge and a huge therapeutic potential that as yet remains unrecognized. Indeed, with biopharmaceutical research on the rise, TM peptides may prove a useful innovation. Using the T-cell antigen receptor (TCR) as a model system of multi-subunits interacting at the TM via electrostatic charges the potential for peptides as therapeutic agents to interfere with normal immune responses is discussed. The principles of such can be extended to other similar receptor systems including those involved in cancer or infection.Key words: transmembrane, peptides, biophysics, therapeutics  相似文献   

2.
We have previously shown that a synthetic peptide termed core peptide (CP), which corresponds to a sequence within the transmembrane domain of the alpha chain of the T cell antigen receptor (TCR), can inhibit IL-2 production in antigen-stimulated T cells and can suppress inflammation in several T cell-mediated animal models of disease. As the first step in determining the mechanism of CP action, we examined the association of CP with the plasma membrane of human T cells using confocal microscopy. A homogeneous distribution of CP was observed in the plasma membrane of human T cells. This membrane localization was dependent on the presence of positive charges in the CP sequence. CP analogs, containing either neutral or negatively charged amino acids in place of the positive amino acid charges, did not localize within TCR membranes. Following antibody-induced TCR clustering, there was specific colocalization of CP with surface TCR. No association was observed with other cell surface receptors when similarly clustered. Since TCR activation leads to an increased movement of the receptor complex to cholesterol/glycosphingolipid (GSL) plasma membrane microdomains (rafts) we examined whether the association of CP with TCR was raft-driven. TCR clustering led only to a partial colocalization of TCRs with raft GSL, ganglioside GM1, and a complete colocalization of CP with TCRs. We conclude that CP associates specifically with plasma membrane TCRs and not raft lipids.  相似文献   

3.
The first crystal structures of intact T-cell receptors (TCRs) and their complexes with MHC peptide antigens (pMHC) were reported during the past year, along with those of a single-chain TCR Fv fragment and a β-chain complexed with two different bacterial superantigens. These structures have shown the similarities and differences in the architecture of the antigen-binding regions of TCRs and antibodies, and how the TCR interacts with pMHC ligands as well as with superantigens  相似文献   

4.
5.
6.
A synthetic peptide termed core peptide (CP), which corresponds to a specific sequence of the TCR-alpha chain transmembrane domain, is known to inhibit IL-2 production in antigen stimulated T-cells. The molecular mechanism of the TCR inhibition is not known. This study examined the effects of CP on TCR subunit assembly and TCR cell surface expression in vitro. Co-transfection experiments between TCR-alpha and CD3-delta using COS-7 cells, and the interaction between TCR-alpha and the CD3 proteins in a T-cell line (2B4) were analysed after incubation with CP or its conjugates. Results indicate that CP co-precipitates with CD3-delta and CD3-epsilon in vitro, without any effect on TCR-alpha/CD3-delta dimerisation or TCR multisubunit assembly and cell surface expression.  相似文献   

7.
A T cell antigen receptor (TCR) transmembrane sequence derived peptide (CP) has been shown to inhibit T cell activation both in vitro and in vivo at the membrane level of the receptor signal transduction. To examine the effect of sugar or lipid conjugations on CP function, we linked CP to 1-aminoglucosesuccinate (GS), N-myristate (MYR), mono-di-tripalmitate (LP1, LP2, or LP3), and a lipoamino acid (LA) and examined the effects of these compounds on T cell activation in vitro and by using a rat model of adjuvant-induced arthritis, in vivo. In vitro, antigen presentation results demonstrated that lipid conjugation enhanced CP's ability to lower IL-2 production from 56.99%+/-15.69 S.D. observed with CP, to 12.08%+/-3.34 S.D. observed with LA. The sugar conjugate GS resulted in only a mild loss of in vitro activity compared to CP (82.95%+/-14.96 S.D.). In vivo, lipid conjugation retarded the progression of adjuvant-induced arthritis by approximately 50%, whereas the sugar conjugated CP, GS, almost completely inhibited the progression of arthritis. This study demonstrates that hydrophobic peptide activity is markedly enhanced in vitro and in vivo by conjugation to lipids or sugars. This may have practical applications in drug delivery and bioavailability of hydrophobic peptides.  相似文献   

8.
In order to study the relationship between assembly, surface expression, and signal transduction of the alpha/beta T-cell antigen receptor-CD3 complex (TCR.CD3), a series of T-cell mutants with a partial block in assembly of the complex was generated. By chemical mutagenesis, we produced somatic cell variants of the human T-leukemia cell line, HPB-ALL, which expressed low amounts of TCR.CD3 complexes on their surface. RNA and protein analyses demonstrated that most variants synthesized normal amounts of the individual members of the complex, i.e. TCR-alpha, TCR-beta, CD3-gamma, -delta, -epsilon, and -zeta. In these variants, less than 10% of the TCR.CD3 complexes inside the cell contained the CD3-zeta 2 homodimer due to an intrinsic deficiency in the formation of the TCR-alpha/beta heterodimer. The low level of assembly of CD3-zeta 2 into the TCR.CD3 complex and an additional decrease in the rate of export of the TCR.CD3 complex from the endoplasmic reticulum explained the low level of expression of alpha/beta receptors on the surface of these mutants. Only cells with the complete set of subunits of the TCR.CD3 complex on their surface were capable of transducing CD3-mediated signals. The results presented in this paper indicate that TCR-alpha/beta heterodimer formation is an obligatory requirement for assemblage of CD3-zeta 2 into a functionally competent TCR.CD3 complex.  相似文献   

9.
Core peptide (CP; GLRILLLKV) is a 9-amino acid peptide derived from the transmembrane sequence of the T-cell antigen receptor (TCR) alpha-subunit. CP inhibits T-cell activation both in vitro and in vivo by disruption of the TCR at the membrane level. To elucidate CP interactions with lipids, surface plasmon resonance (SPR) and circular dichroism (CD) were used to examine CP binding and secondary structure in the presence of either the anionic dimyristoyl-L-alpha-phosphatidyl-DL-glycerol (DMPG), or the zwitterionic dimyristoyl-L-alpha-phoshatidyl choline (DMPC).Using lipid monolayers and bilayers, SPR experiments demonstrated that irreversible peptide-lipid binding required the hydrophobic interior provided by a membrane bilayer. The importance of electrostatic interactions between CP and phospholipids was highlighted on lipid monolayers as CP bound reversibly to anionic DMPG monolayers, with no detectable binding observed on neutral DMPC monolayers.CD revealed a dose-dependent conformational change of CP from a dominantly random coil structure to that of beta-structure as the concentration of lipid increased relative to CP. This occurred only in the presence of the anionic DMPG at a lipid : peptide molar ratio of 1.6:1 as no conformational change was observed when the zwitterionic DMPC was tested up to a lipid : peptide ratio of 8.4 : 1.  相似文献   

10.
11.
The T-cell receptor (TCR) zeta subunit is an important component of the TCR complex, involved in signal transduction events following TCR engagement. In this study, we showed that the TCR zeta chain is constitutively tyrosine phosphorylated to similar extents in thymocytes and lymph node T cells. Approximately 35% of the tyrosine-phosphorylated TCR zeta (phospho zeta) precipitated from total cell lysates appeared to be surface associated. Furthermore, constitutive phosphorylation of TCR zeta in T cells occurred independently of antigen stimulation and did not require CD4 or CD8 coreceptor expression. In lymph node T cells that constitutively express tyrosine-phosphorylated TCR zeta, there was a direct correlation between surface TCR-associated protein tyrosine kinase (PTK) activity and expression of phospho zeta. TCR stimulation of these cells resulted in an increase in PTK activity that coprecipitated with the surface TCR complex and a corresponding increase in the levels of phospho zeta. TCR ligations also contributed to the detection of several additional phosphoproteins that coprecipitated with surface TCR complexes, including a 72-kDa tyrosine-phosphorylated protein. The presence of TCR-associated PTK activity also correlated with the binding of a 72-kDa protein, which became tyrosine phosphorylated in vitro kinase assays, to tyrosine phosphorylated TCR zeta. The cytoplasmic region of the TCR zeta chain was synthesized, tyrosine phosphorylated, and conjugated to Sepharose beads. Only tyrosine-phosphorylated, not nonphosphorylated, TCR zeta beads were capable of immunoprecipitating the 72-kDa protein from total cell lysates. This 72-kDa protein is likely the murine equivalent of human PTK ZAP-70, which has been shown to associate specifically with phospho zeta. These results suggest that TCR-associated PTK activity is regulated, at least in part, by the tyrosine phosphorylation status of TCR zeta.  相似文献   

12.
Studies with the T-cell antigen receptor (TCR) have shown that the endoplasmic reticulum, or an organelle closely associated with it, can retain and degrade membrane proteins selectively. The observation that only three (alpha, beta, and delta) of the six (alpha beta gamma delta epsilon zeta) subunits of the TCR are susceptible to proteolysis implies that structural features within the labile proteins mark them for degradation. The TCR beta chain is degraded in the endoplasmic reticulum, and, in this study, we have started to define the domains of the protein that make it susceptible to proteolysis. The experiments show that the transmembrane anchor and short five-amino-acid cytoplasmic tail of the protein contain a dominant determinant of proteolysis. When these residues were removed from the beta chain, the protein became resistant to proteolysis. Even though the resulting ectodomain of the beta chain lacked a transmembrane anchor, it was not secreted by cells and was retained in the endoplasmic reticulum. We conclude that retention in the endoplasmic reticulum alone does not lead to degradation. The results suggest that structural features within the membrane anchor of the protein predispose the beta chain to proteolysis. This was confirmed by replacing the membrane anchor of the interleukin 2 (IL2) receptor, a protein that was stable within the secretory pathway, with that of the TCR beta chain. The unmodified IL2 receptor was transported efficiently to the surface of cells, and an "anchor minus" construct was secreted quantitatively into the culture media. When the membrane anchor of the IL2 receptor was replaced with that of the TCR beta chain, the chimera was unable to reach the Golgi apparatus and was degraded rapidly.  相似文献   

13.
Multimolecular associations of the T-cell antigen receptor   总被引:4,自引:0,他引:4  
T cells are activated when the T-cell receptor for antigen (TCR) interacts with an antigenic peptide bound to a major histocompatibility complex (MHC) molecule on the surface of another cell. It is often assumed that T-cell activation is induced by the crosslinking of TCRs. In this article, Albertus Beyers, Louise Spruyt and Alan Williams argue that this mechanism is not generally applicable. They hypothesize that the key event in T-cell activation is the formation of multimolecular complexes consisting of the TCR and several other polypeptides, including CD4 or CD8, CD2, CD5 and the associated tyrosine kinases p59(fyn) and p56(lck).  相似文献   

14.
Although the T-cell receptor for antigen (TCR) lacks intrinsic kinase activity, stimulation of this receptor induces tyrosine phosphorylation of multiple substrates. In contrast, the epidermal growth factor receptor (EGFR) has intrinsic cytoplasmic tyrosine kinase catalytic activity that is activated upon EGF binding. To compare the functional effects of the TCR and a transmembrane protein tyrosine kinase (PTK), we used retrovirus-mediated gene transduction to express the human c-erbB proto-oncogene, encoding the EGFR, in a murine T-cell hybridoma. Tyrosine phosphorylation induced by the TCR and the EGFR occurred on substrates unique to each receptor as well as on several shared substrates, including the zeta chain of the TCR. Stimulation of the EGFR induced calcium ion flux in these cells, suggesting that the heterologous tyrosine kinase can couple to the T-cell phospholipase signal transduction pathway, but this stimulus did not lead to interleukin 2 production. However, EGF stimulation of transduced cells significantly enhanced TCR signaling, as assessed by interleukin 2 production, indicating that cross talk can occur between the TCR and a transmembrane PTK.  相似文献   

15.
16.
The T-cell receptor mutant frequency (TCR-Mf) was measured in 53 young adults, who were treated with radioiodine for thyroid cancer. Patients came from the southern part of Belarus. This region had suffered the most from the Chernobyl Disaster. TCR-Mf was determined by flow cytometry before and after 1 to maximal 10 treatments. Before treatment, TCR-Mf of patients was 2.0 x 10(-14). This Mf value is in the same range as that of young healthy students. After radioiodine therapy (RIT), TCR-Mf increases within about half a year to a maximum. The increase per one mGy to red marrow was 8.7 x 10(-7). After the maximum TCR-Mf declines exponentially. The half-life of TCR mutants was found to be 3.2 years. On the basis of these data, a calibration curve for the use of TCR-Mf as a biological dosimeter is given.  相似文献   

17.
18.
19.
To investigate the relationship between the radiation-induced increase of T-cell receptor (TCR) defective variant fractions and physiological status such as pregnancy, C57BL/ 6N mice were irradiated with 3 Gy of gamma rays at various days of gestation, just before and just after pregnancy. While the highest level of variant fractions in spleen T lymphocytes appeared at 9 days postirradiation and resolved fairly rapidly for nonpregnant mice, the increased variant fractions for pregnant mice irradiated at 16.5 days of gestation reached a plateau at 14 days postirradiation and remained at high levels until 28 days after irradiation. Therefore, variant fractions 28 days postirradiation were measured to determine the overall effect of radiation on the kinetics of TCR variant fractions during gestation. There was no significant difference in the baseline TCR variant fraction between unirradiated nonpregnant and pregnant mice. TCR variant fractions after irradiation were about twofold higher in pregnant mice (from 10.5 days of gestation until delivery) than those in nonpregnant mice. Both gamma radiation and pregnancy caused a decrease in the proportion of na?ve T-cell subsets and an increase in TCR variant fractions of na?ve T cells. In addition, the prolonged postirradiation increase in the TCR variant fractions of pregnant mice was associated with an increase in serum progesterone level. Differences between pregnant and nonpregnant mice in the kinetics of postirradiation restoration of T-cell systems may be involved in producing the differences in residual TCR variant fractions of these mice.  相似文献   

20.
The T-cell receptor mediating restrictive recognition of antigen   总被引:8,自引:0,他引:8  
M Cohn 《Cell》1983,33(3):657-669
Four facts characterize restrictive recognition of antigen. First, in large measure, allele-specific determinants on R are recognized when R is functioning either as a restricting element (RL) or as an allo-target (or even xeno-target) (RF). Second, there is a high frequency of virgin antigen-responsive t cells with alloreactivity, i.e. anti-RF. Third, there is a strict relationship between the class of effector function and the class of RL recognized (restrictive recognition of antigen, XF) but a relaxed relationship between class of effector function and class of RF recognized (alloreactivity). Fourth, the effector T cell functions anti-RL-dependently when XF is the target (restrictive recognition of antigen) and anti-RL-independently when RF is the target (alloreactivity). From these facts are derived the following conclusions. The T cell uses a dual recognitive, single receptor (Model I, Figure 1). A single germ-line VT locus specifying anti-allele-specific recognition of species R encodes both the anti-R and the anti-X combining sites. A "learning" process (occurring in the thymus) is required to establish the restriction specificity (anti-RL) as well as the effector function/class of RL relationship. The repertoire is derived by somatic mutation of all germ-line VT genes specifying anti-RF (Model IA, Table 3 and Figure 9). Given Model IA (Table 3 and Figure 9), we can account further for the existence of an extensive polymorphism of R and minimal polygeneism, for the high frequency of crossreactivity between anti-XF and RF, and for the physiology and genetics of cell-cell communication in immune responsiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号