首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Miao B  Degterev A 《Autophagy》2011,7(6):650-651
The critical role of phopshatidylinositol-3-kinase (PtdIns3K) signaling in the regulation of a wide range of cellular functions, including cell survival and proliferation, autophagy, metabolism and cell migration, is well recognized. Activation of PtdIns3K leads to the generation of phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P 3). PtdIns(3,4,5)P 3 activates a complex signaling network controlling these diverse cellular functions through binding to Pleckstrin Homology (PH) domains of the effector proteins. We have recently described a new structural class of nonphosphoinositide small molecule inhibitors targeting binding of PtdIns(3,4,5) P 3 to PH domain targets. Using an in vitro PtdIns(3,4,5)P 3-PH domain binding assay, we identified two distinct PtdIns(3,4,5)P 3 antagonists, PIT-1 and PIT-2. Further cellular analysis revealed that both PITs inhibit PtdIns(3,4,5) P 3-dependent signaling mediated by Akt kinase, leading to the induction of apoptosis, metabolic stress and autophagy. An improved PIT-1 analog, DM-PIT-1, displays significant anticancer activity in the mouse syngeneic 4T1 breast cancer model in vivo. Discovery of PITs as well as other PtdIns(3,4,5)P 3 antagonists recently described by other laboratories suggest the possibility of targeting a key universal PtdIns(3,4,5)P 3/PH domain binding step in the PtdIns3K pathway using heterologous small molecule modulators.  相似文献   

2.
Many membrane-associated proteins are involved in various signaling pathways, including the phosphoinositide 3-kinase (PI3K) pathway, which has key roles in diverse cellular processes. Disruption of the activities of these proteins is involved in the development of disease in humans, making these proteins promising targets for drug development. In most cases, the catalytic domain is targeted; however, it is also possible to target membrane associations in order to regulate protein activity. In this study, we established a novel method to study protein-lipid interactions and screened for flavonoid-derived antagonists of PtdIns(3,4,5)P3 binding with the phosphoinositide-dependent kinase 1 (PDK1) pleckstrin homology (PH) domain. Using an enhanced green fluorescent protein (eGFP)-tagged PDK1 PH domain and 50% sucrose-loaded liposomes, the protein-lipid interaction could be efficiently evaluated using liposome pull-down assays coupled with fluorescence spectrophotometry, and a total of 32 flavonoids were screened as antagonists for PtdIns(3,4,5)P3 binding with the PDK1 PH domain. From this analysis, we found that two adjunct hydroxyl groups in the C ring were responsible for the inhibitory effects of the flavonoids. Because the flavonoids shared structural similarities, the results were then subjected to quantitative structure-activity relationship (QSAR) analysis. The results were then further confirmed by in silico docking experiments. Taken together, our strategy presented herein to screen antagonists targeting lipid-protein interactions could be an alternative method for identification and characterization of drug candidates.  相似文献   

3.
Phosphatidylinositol-3,4-5-triphosphates (PtdIns(3,4,5)P3) formed by phosphoinositide-3-kinase (PI3K) had been known as a signaling molecule that plays important roles in diverse cellular processes such as cell signaling, metabolism, cell differentiation, and apoptosis. PtdIns(3,4,5)P3 regulates diverse cellular processes by recruiting effector proteins to the specific cellular locations for correct functions. In this study, we reported the inhibitory effect of small chemicals on the interaction between PtdIns(3,4,5)P3–Btk PH domain. Small chemicals were synthesized based on structural similarity of PtdInsP head-groups, and tested the inhibitory effects in vitro via surface plasmon resonance (SPR). As a result, the chemical 8 showed highest inhibitory effect with 17 μM of IC50 value. To elucidate diverse inhibitory effects of different small chemicals we employed in silico docking experiment using molecular modeling and simulation. The result of docking experiments showed chemical 8 has more hydrogen bonding with the residues in PtdIns(3,4,5)P3 binding site of Btk PH domain than others. Overall, our studies demonstrate the efficient approach to develop lipid binding inhibitors, and further we can use these chemicals to regulate effector proteins. In addition, our study would provide new insight that lipid binding domain may be the attractive therapeutic targets to treat severe human diseases.  相似文献   

4.
Pleckstrin homology (PH) domains are modules characterised by a conserved three-dimensional protein fold. Several PH domains bind phosphoinositides with high affinity and specificity whilst most others do not. ARAP3 is a dual GTPase activating protein for Arf6 and RhoA which was identified in a screen for phosphatidylinositol-(3,4,5)-trisphophate (PtdIns(3,4,5)P3) binding proteins. It is a regulator of cell shape and adhesion, and is itself regulated by PtdIns(3,4,5)P3, which acts to recruit ARAP3 to the plasma membrane and to catalytically activate it. We show here that ARAP3 binds to PtdIns(3,4,5)P3 in an unusual, PH domain-dependent manner. None of the five PH domains are sufficient to bind PtdIns(3,4,5)P3 in isolation. Instead, the minimal PtdIns(3,4,5)P3 binding fragment comprises ARAP3's N-terminal tandem PH domains, and an N-terminal linker region. For substantial binding, the N-terminal sterile alpha motif (SAM) domain is also required. Site-directed mutagenesis of either of the two N-terminal PH domains within the fragment greatly reduces binding to PtdIns(3,4,5)P3, however, in the context of the full-length protein, point mutations in the second PH domain have a lesser effect on binding, whilst deletion of any one of the five PH domains abolishes PtdIns(3,4,5)P3 binding. We propose a mechanism by which basic residues from the N-terminal tandem PH domains, and from elsewhere in the protein synergise to mediate strong, specific PtdIns(3,4,5)P3 binding.  相似文献   

5.
Regulation of tyrosine phosphorylation on insulin receptor substrate-1 (IRS-1) is essential for insulin signaling. The protein tyrosine phosphatase (PTP) C1-Ten/Tensin2 has been implicated in the regulation of IRS-1, but the molecular basis of this dephosphorylation is not fully understood. Here, we demonstrate that the cellular phosphatase activity of C1-Ten/Tensin2 on IRS-1 is mediated by the binding of the C1-Ten/Tensin2 Src-homology 2 (SH2) domain to phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). We show that the role of C1-Ten/Tensin2 is dependent on insulin-induced phosphoinositide 3-kinase activity. The C1-Ten/Tensin2 SH2 domain showed strong preference and high affinity for PtdIns(3,4,5)P3. Using site-directed mutagenesis, we identified three basic residues in the C1-Ten/Tensin2 SH2 domain that were critical for PtdIns(3,4,5)P3 binding but were not involved in phosphotyrosine binding and PTP activity. Using a PtdIns(3,4,5)P3 binding-deficient mutant, we showed that the specific binding of the C1-Ten/Tensin2 SH2 domain to PtdIns(3,4,5)P3 allowed C1-Ten/Tensin2 to function as a PTP in cells. Collectively, our findings suggest that the interaction between the C1-Ten/Tensin2 SH2 domain and PtdIns(3,4,5)P3 produces a negative feedback loop of insulin signaling through IRS-1.  相似文献   

6.
Phosphatidylinositol 3-kinase (PI3K) mediates a variety of cellular responses by generating PtdIns(3,4)P2 and PtdIns(3,4,5)P3. These 3-phosphoinositides then function directly as second messengers to activate downstream signaling molecules by binding pleckstrin homology (PH) domains in these signaling molecules. We have established a novel assay in the yeast Saccharomyces cerevisiae to identify proteins that bind PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in vivo which we have called TOPIS (Targets of PI3K Identification System). The assay uses a plasma membrane-targeted Ras to complement a temperature-sensitive CDC25 Ras exchange factor in yeast. Coexpression of PI3K and a fusion protein of activated Ras joined to a PH domain known to bind PtdIns(3,4)P2 (AKT) or PtdIns(3,4,5)P3 (BTK) rescues yeast growth at the non-permissive temperature of 37 degreesC. Using this assay, we have identified several amino acids in the beta1-beta2 region of PH domains that are critical for high affinity binding to PtdIns(3,4)P2 and/or PtdIns(3,4,5)P3, and we have proposed a structural model for how these PH domains might bind PI3K products with high affinity. From these data, we derived a consensus sequence which predicts high-affinity binding to PtdIns(3, 4)P2 and/or PtdIns(3,4,5)P3, and we have identified several new PH domain-containing proteins that bind PI3K products, including Gab1, Dos, myosinX, and Sbf1. Use of this assay to screen for novel cDNAs which rescue yeast at the non-permissive temperature should provide a powerful approach for uncovering additional targets of PI3K.  相似文献   

7.
Phospholipase C‐η2 is a recently identified phospholipase C (PLC) implicated in the regulation of neuronal differentiation/maturation. PLCη2 activity is triggered by intracellular calcium mobilization and likely serves to amplify Ca2+ signals by stimulating further Ca2+ release from Ins(1,4,5)P3‐sensitive stores. The role of PLCη2 in neuritogenesis was assessed during retinoic acid (RA)‐induced Neuro2A cell differentiation. PLCη2 expression increased two‐fold during a 4‐day differentiation period. Stable expression of PLCη2‐targetted shRNA led to a decrease in the number of differentiated cells and total length of neurites following RA‐treatment. Furthermore, RA response element activation was perturbed by PLCη2 knockdown. Using a bacterial two‐hybrid screen, we identified LIM domain kinase 1 (LIMK1) as a putative interaction partner of PLCη2. Immunostaining of PLCη2 revealed significant co‐localization with LIMK1 in the nucleus and growing neurites in Neuro2A cells. RA‐induced phosphorylation of LIMK1 and cAMP‐responsive element‐binding protein was reduced in PLCη2 knock‐down cells. The phosphoinositide‐binding properties of the PLCη2 PH domain, assessed using a FRET‐based assay, revealed this domain to possess a high affinity toward PtdIns(3,4,5)P3. Immunostaining of PLCη2 together with PtdIns(3,4,5)P3 in the Neuro2A cells revealed a high degree of co‐localization, indicating that PtdIns(3,4,5)P3 levels in cellular compartments are likely to be important for the spatial control of PLCη2 signaling.  相似文献   

8.
Luo HR  Huang YE  Chen JC  Saiardi A  Iijima M  Ye K  Huang Y  Nagata E  Devreotes P  Snyder SH 《Cell》2003,114(5):559-572
Inositol phosphates are well-known signaling molecules, whereas the inositol pyrophosphates, such as diphosphoinositol pentakisphosphate (InsP7/IP7) and bis-diphosphoinositol tetrakisphosphate (InsP8/IP8), are less well characterized. We demonstrate physiologic regulation of Dictyostelium chemotaxis by InsP7 mediated by its competition with PtdIns(3,4,5)P3 for binding pleckstrin homology (PH) domain-containing proteins. Chemoattractant stimulation triggers rapid and sustained elevations in InsP7/InsP8 levels. Depletion of InsP7 and InsP8 by deleting the gene for InsP6 kinase (InsP6K/IP6K), which converts inositol hexakisphosphate (InsP6/IP6) to InsP7, causes rapid aggregation of mutant cells and increased sensitivity to cAMP. Chemotaxis is mediated by membrane translocation of certain PH domain-containing proteins via specific binding to PtdIns(3,4,5)P3. InsP7 competes for PH domain binding with PtdIns(3,4,5)P3 both in vitro and in vivo. InsP7 depletion enhances PH domain membrane translocation and augments downstream chemotactic signaling activity.  相似文献   

9.
The carboxy-terminal pleckstrin homology (PH) domain recruits GRP1 to the plasma membrane through the specific binding to phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3]. Here, we describe backbone and side chain assignments of the GRP1 PH domain determined by triple resonance experiments. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Phosphatidylinositides, most negatively charged lipids in cellular membranes, regulate diverse effector proteins through the interaction with their lipid binding domains. We have previously reported inhibitory effect of small chemicals on the interaction between PtdIns(3,4,5)P3 and Btk PH domain. Here, we report that the inhibitory effects of same sets of chemicals on Grp1 PH domain and epsin1 ENTH domain to elucidate diversity of inhibitory mechanisms upon different lipid binding domains. Among the chemicals, chemical 8 showed best inhibition in vitro assay for Grp1 PH domain and epsin1 ENTH domain, and then the interaction between small chemicals and lipid binding domains was further investigated by in silico docking experiments. As a result, it was concluded that the diverse inhibitory effects on different lipid binding domains were dependent on not only the number of interactions between small chemical and domain, but also additional interaction with positively charged surfaces as the secondary binding sites. This finding will help to develop lipid binding inhibitors as antagonists for lipid–protein interactions, and these inhibitors would be novel therapeutic drug candidates via regulating effector proteins involved in severe human diseases.  相似文献   

11.
Inside-out activation of integrins is mediated via the binding of talin and kindlin to integrin β-subunit cytoplasmic tails. The kindlin FERM domain is interrupted by a pleckstrin homology (PH) domain within its F2 subdomain. Here, we present data confirming the importance of the kindlin-1 PH domain for integrin activation and its x-ray crystal structure at a resolution of 2.1 Å revealing a C-terminal second α-helix integral to the domain but found only in the kindlin protein family. An isoform-specific salt bridge occludes the canonical phosphoinositide binding site, but molecular dynamics simulations display transient switching to an alternative open conformer. Molecular docking reveals that the opening of the pocket would enable potential ligands to bind within it. Although lipid overlay assays suggested the PH domain binds inositol monophosphates, surface plasmon resonance demonstrated weak affinities for inositol 3,4,5-triphosphate (Ins(3,4,5)P3; KD ∼100 μm) and no monophosphate binding. Removing the salt bridge by site-directed mutagenesis increases the PH domain affinity for Ins(3,4,5)P3 as measured by surface plasmon resonance and enables it to bind PtdIns(3,5)P2 on a dot-blot. Structural comparison with other PH domains suggests that the phosphate binding pocket in the kindlin-1 PH domain is more occluded than in kindlins-2 and -3 due to its salt bridge. In addition, the apparent affinity for Ins(3,4,5)P3 is affected by the presence of PO4 ions in the buffer. We suggest the physiological ligand of the kindlin-1 PH domain is most likely not an inositol phosphate but another phosphorylated species.  相似文献   

12.
The general receptor for phosphoinositides isoform 1 (GRP1) is recruited to the plasma membrane in response to activation of phosphoinositide 3-kinases and accumulation of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)]. GRP1's pleckstrin homology (PH) domain recognizes PtdIns(3,4,5)P(3) with high specificity and affinity, however, the precise mechanism of its association with membranes remains unclear. Here, we detail the molecular basis of membrane anchoring by the GRP1 PH domain. Our data reveal a multivalent membrane docking involving PtdIns(3,4,5)P(3) binding, regulated by pH and facilitated by electrostatic interactions with other anionic lipids. The specific recognition of PtdIns(3,4,5)P(3) triggers insertion of the GRP1 PH domain into membranes. An acidic environment enhances PtdIns(3,4,5)P(3) binding and increases membrane penetration as demonstrated by NMR and monolayer surface tension and surface plasmon resonance experiments. The GRP1 PH domain displays a 28 nM affinity for POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine/PtdIns(3,4,5)P(3) vesicles at pH 6.0, but binds 22-fold weaker at pH 8.0. The pH sensitivity is attributed in part to the His355 residue, protonation of which is required for the robust interaction with PtdIns(3,4,5)P(3) and significant membrane penetration, as illustrated by mutagenesis data. The binding affinity of the GRP1 PH domain for PtdIns(3,4,5)P(3)-containing vesicles is further amplified (by approximately 6-fold) by nonspecific electrostatic interactions with phosphatidylserine/phosphatidylinositol. Together, our results provide new insight into the multivalent mechanism of the membrane targeting and regulation of the GRP1 PH domain.  相似文献   

13.
GRP1 and the related proteins ARNO and cytohesin-1 are ARF exchange factors that contain a pleckstrin homology (PH) domain thought to target these proteins to cell membranes through binding polyphosphoinositides. Here we show the PH domains of all three proteins exhibit relatively high affinity for dioctanoyl phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P(3)), with K(D) values of 0.05, 1.6 and 1.0 micrometer for GRP1, ARNO, and cytohesin-1, respectively. However, the GRP1 PH domain was unique among these proteins in its striking selectivity for PtdIns(3,4, 5)P(3) versus phosphatidylinositol 4,5-diphosphate (PtdIns(4,5)P(2)), for which it exhibits about 650-fold lower apparent affinity. Addition of a glycine to the Gly(274)-Gly(275) motif in GRP1 greatly increased its binding affinity for PtdIns(4,5)P(2) with little effect on its binding to PtdIns(3,4,5)P(3), while deletion of a single glycine in the corresponding triglycine motif of the ARNO PH domain markedly reduced its binding affinity for PtdIns(4,5)P(2) but not for PtdIns(3,4,5)P(3). In intact cells, the hemagglutinin epitope-tagged PH domain of GRP1 was recruited to ruffles in the cell surface in response to insulin, as were full-length GRP1 and cytohesin-1, but the PH domain of cytohesin-1 was not. These data indicate that the unique diglycine motif in the GRP1 PH domain, as opposed to the triglycine in ARNO and cytohesin-1, directs its remarkable PtdIns(3,4,5)P(3) binding selectivity.  相似文献   

14.
Receptor-mediated endocytosis via clathrin-coated vesicles has been extensively studied and, while many of the protein players have been identified, much remains unknown about the regulation of coat assembly and the mechanisms that drive vesicle formation [1]. Some components of the endocytic machinery interact with inositol polyphosphates and inositol lipids in vitro, implying a role for phosphatidylinositols in vivo [2] and [3]. Specifically, the adaptor protein complex AP2 binds phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), PtdIns(3)P, PtdIns(3,4,5)P3 and inositol phosphates. Phosphatidylinositol binding regulates AP2 self-assembly and the interactions of AP2 complexes with clathrin and with peptides containing endocytic motifs [4] and [5]. The GTPase dynamin contains a pleckstrin homology (PH) domain that binds PtdIns(4,5)P2 and PtdIns(3,4,5)P3 to regulate GTPase activity in vitro [6] and [7]. However, no direct evidence for the involvement of phosphatidylinositols in clathrin-mediated endocytosis exists to date. Using well-characterized PH domains as high affinity and high specificity probes in combination with a perforated cell assay that reconstitutes coated vesicle formation, we provide the first direct evidence that PtdIns(4,5)P2 is required for both early and late events in endocytic coated vesicle formation.  相似文献   

15.
Proteins containing membrane targeting domains play essential roles in many cellular signaling pathways. However, important features of the membrane-bound state are invisible to bulk methods, thereby hindering mechanistic analysis of membrane targeting reactions. Here we use total internal reflection fluorescence microscopy (TIRFM), combined with single particle tracking, to probe the membrane docking mechanism of a representative pleckstrin homology (PH) domain isolated from the general receptor for phosphoinositides, isoform 1 (GRP1). The findings show three previously undescribed features of GRP1 PH domain docking to membranes containing its rare target lipid, phosphatidylinositol (3,4,5)-trisphosphate [PI(3,4,5)P3]. First, analysis of surface diffusion kinetics on supported lipid bilayers shows that in the absence of other anionic lipids, the PI(3,4,5)P3-bound protein exhibits the same diffusion constant as a single lipid molecule. Second, the binding of the anionic lipid phosphatidylserine to a previously unidentified secondary binding site slows both diffusion and dissociation kinetics. Third, TIRFM enables direct observation of rare events in which dissociation from the membrane surface is followed by transient diffusion through solution and rapid rebinding to a nearby, membrane-associated target lipid. Overall, this study shows that in vitro single-molecule TIRFM provides a new window into the molecular mechanisms of membrane docking reactions.  相似文献   

16.
Phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2) and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) are lipid second messengers that regulate various cellular processes by recruiting a wide range of downstream effector proteins to membranes. Several pleckstrin homology (PH) domains have been reported to interact with PtdIns(3,4)P2 and PtdIns(3,4,5)P3. To understand how these PH domains differentially respond to PtdIns(3,4)P2 and PtdIns(3,4,5)P3 signals, we quantitatively determined the PtdIns(3,4)P2 and PtdIns(3,4,5)P3 binding properties of several PH domains, including Akt, ARNO, Btk, DAPP1, Grp1, and C-terminal TAPP1 PH domains by surface plasmon resonance and monolayer penetration analyses. The measurements revealed that these PH domains have significant different phosphoinositide specificities and affinities. Btk-PH and TAPP1-PH showed genuine PtdIns(3,4,5)P3 and PtdIns(3,4)P2 specificities, respectively, whereas other PH domains exhibited less pronounced specificities. Also, the PH domains showed different degrees of membrane penetration, which greatly affected the kinetics of their membrane dissociation. Mutational studies showed that the presence of two proximal hydrophobic residues on the membrane-binding surface of the PH domain is important for membrane penetration and sustained membrane residence. When NIH 3T3 cells were stimulated with platelet-derived growth factor to generate PtdIns(3,4,5)P3, reversible translocation of Btk-PH, Grp1-PH, ARNO-PH, DAPP1-PH, and its L177A mutant to the plasma membrane was consistent with their in vitro membrane binding properties. Collectively, these studies provide new insight into how various PH domains would differentially respond to cellular PtdIns(3,4)P2 and PtdIns(3,4,5)P3 signals.  相似文献   

17.
After decades in PtdIns(3,4,5)P3's shadow, PtdIns(3,4)P2 has now emerged as a bona fide regulator of important cellular events, including endocytosis and cell migration. New understanding of PtdIns(3,4)P2's cellular roles has been possible via novel approaches to observe and quantify cellular PtdIns(3,4)P2 dynamics, alongside methods to target the kinases and phosphatases governing phosphoinositide turnover. Despite this, the mechanisms by which PtdIns(3,4)P2 orchestrates its cellular roles remain more poorly understood, most notably because, to date, few PtdIns(3,4)P2 effectors have been identified. Here, we develop and apply an affinity-proteomics strategy to conduct a global screen for PtdIns(3,4)P2 interactors in human platelets; a primary cell type with striking PtdIns(3,4)P2 accumulation. Through an integrated approach, coupling affinity capture of PtdIns(3,4)P2-binding proteins to both label-free and isobaric tag-based quantitative proteomics, we identify a diverse PtdIns(3,4)P2 interactome. Included are long-established PtdIns(3,4)P2-binding proteins such as PLEKHA1, PLEKHA2, AKT and DAPP1, and a host of potentially novel effectors, including MTMR5, PNKD, RASA3 and GAB3. The PtdIns(3,4)P2 interactome shows an enrichment of pleckstrin homology (PH) domain-containing proteins, and through bioinformatics and array analyses we characterise the PH domain of MTMR5 and define its phosphoinositide selectivity. The interactome is also diverse in function, including several proteins known to support protein trafficking and cytoskeletal mobilisation. Such proteins have the ability to drive key platelet events, and to fulfil recently-defined roles for PtdIns(3,4)P2 in a wider range of cell types. Moreover, this study will serve as a valuable resource for the future characterisation of effector-driven PtdIns(3,4)P2 function.  相似文献   

18.
Protrudin is a FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia. Our image-based screening of the lipid binding domain library revealed novel plasma membrane localization of the FYVE domain of protrudin unlike canonical FYVE domains that are localized to early endosomes. The membrane binding study by surface plasmon resonance analysis showed that this FYVE domain preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) unlike canonical FYVE domains that specifically bind phosphatidylinositol 3-phosphate (PtdIns(3)P). Furthermore, we found that these phosphoinositides (PtdInsP) differentially regulate shuttling of protrudin between endosomes and plasma membrane via its FYVE domain. Protrudin mutants with reduced PtdInsP-binding affinity failed to promote neurite outgrowth in primary cultured hippocampal neurons. These results suggest that novel PtdInsP selectivity of the protrudin-FYVE domain is critical for its cellular localization and its role in neurite outgrowth.  相似文献   

19.
ARAP1 is a phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)-dependent Arf GTPase-activating protein (GAP) with five PH domains that regulates endocytic trafficking of the epidermal growth factor receptor (EGFR). Two tandem PH domains are immediately N-terminal of the Arf GAP domain, and one of these fits the consensus sequence for PtdIns(3,4,5)P3 binding. Here, we tested the hypothesis that PtdIns(3,4,5)P3-dependent recruitment mediated by the first PH domain of ARAP1 regulates the in vivo and in vitro function of ARAP1. We found that PH1 of ARAP1 specifically bound to PtdIns(3,4,5)P3, but with relatively low affinity (≈1.6 μm), and the PH domains did not mediate PtdIns(3,4,5)P3-dependent recruitment to membranes in cells. However, PtdIns(3,4,5)P3 binding to the PH domain stimulated GAP activity and was required for in vivo function of ARAP1 as a regulator of endocytic trafficking of the EGFR. Based on these results, we propose a variation on the model for the function of phosphoinositide-binding PH domains. In our model, ARAP1 is recruited to membranes independently of PtdIns(3,4,5)P3, the subsequent production of which triggers enzymatic activity.Pleckstrin homology (PH)2 domains are a common structural motif encoded by the human genome (1, 2). Approximately 10% of PH domains bind to phosphoinositides. These PH domains are thought to mediate phosphoinositide-dependent recruitment to membranes (13). Most PH domains likely have functions other than or in addition to phosphoinositide binding. For example, PH domains have been found to bind to protein and DNA (412). In addition, some PH domains have been found to be structurally and functionally integrated with adjacent domains (13, 14). A small fraction of PH domain-containing proteins (about 9% of the human proteins) have multiple PH domains arranged in tandem, which have been proposed to function as adaptors but have only been examined in one protein (15, 16). Arf GTPase-activating proteins (GAPs) of the ARAP family are phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3)-dependent Arf GAPs with tandem PH domains (17, 18). The function of specific PH domains in regulating Arf GAP activity and for biologic activity has not been described.Arf GAPs are proteins that induce the hydrolysis of GTP bound to Arfs (1923). The Arf proteins are members of the Ras superfamily of GTP-binding proteins (2427). The six Arf proteins in mammals (five in humans) are divided into three classes based on primary sequence: Arf1, -2, and -3 are class 1, Arf4 and -5 are class 2, and Arf6 is class 3 (23, 24, 2729). Class 1 and class 3 Arf proteins have been studied more extensively than class 2. They have been found to regulate membrane traffic and the actin cytoskeleton.The Arf GAPs are a family of proteins with diverse domain structures (20, 21, 23, 30). ARAPs, the most structurally complex of the Arf GAPs, contain, in addition to an Arf GAP domain, the sterile α motif (SAM), five PH, Rho GAP, and Ras association domains (17, 18, 31, 32). The first and second and the third and fourth PH domains are tandem (Fig. 1). The first and third PH domains of the ARAPs fit the consensus for PtdIns(3,4,5)P3 binding (3335). ARAPs have been found to affect actin and membrane traffic (21, 23). ARAP3 regulates growth factor-induced ruffling of porcine aortic endothelial cells (31, 36, 37). The function is dependent on the Arf GAP and Rho GAP domains. ARAP2 regulates focal adhesions, an actin cytoskeletal structure (17). ARAP2 function requires Arf GAP activity and a Rho GAP domain capable of binding RhoA·GTP. ARAP1 has been found to have a role in membrane traffic (18). The protein associates with pre-early endosomes involved in the attenuation of EGFR signals. The function of the tandem PH domains in the ARAPs has not been examined.Open in a separate windowFIGURE 1.ARAP1 binding to phospholipids. A, schematic of the recombinant proteins used in this study. Domain abbreviations: Ank, ankyrin repeat; PLCδ-PH, PH domain of phospholipase C δ; RA, Ras association motif; RhoGAP, Rho GTPase-activating domain. B, ARAP1 phosphoinositide binding specificity. 500 nm PH1-Ank recombinant protein was incubated with sucrose-loaded LUVs formed by extrusion through a 1-μm pore filter. LUVs contained PtdIns alone or PtdIns with 2.5 μm PtdIns(3,4,5)P3, 2.5 μm PtdIns(3)P, 2.5 μm PtdIns(4)P, 2.5 μm PtdIns(5)P, 2.5 μm PtdIns(3,4)P2, 2.5 μm PtdIns(3,5)P2, or 2.5 μm PtdIns(4,5)P2 with a total phosphoinositide concentration of 50 μm and a total phospholipid concentration of 500 μm. Vesicles were precipitated by ultracentrifugation, and associated proteins were separated by SDS-PAGE. The amount of precipitated protein was determined by densitometry of the Coomassie Blue-stained gels with standards on each gel. C, PtdIns(3,4,5)P3-dependent binding of ARAP1 to LUVs. 1 μm PH1-Ank or ArfGAP-Ank recombinant protein was incubated with 1 mm sucrose-loaded LUVs formed by extrusion through a 1-μm pore size filter containing varying concentration of PtdIns(3,4,5)P3. Precipitation of LUVs and analysis of associated proteins were performed as described in B. The average ± S.E. of three independent experiments is presented.Here we investigated the role of the first two PH domains of ARAP1 for catalysis and in vivo function. The first PH domain fits the consensus sequence for PtdIns(3,4,5)P3 binding (3335). The second does not fit a phosphoinositide binding consensus but is immediately N-terminal to the GAP domain. We have previously reported that the PH domain that occurs immediately N-terminal of the Arf GAP domain of ASAP1 is critical for the catalytic function of the protein (38, 39). We tested the hypothesis that the two PH domains of ARAP1 function independently; one recruits ARAP1 to PtdIns(3,4,5)P3-rich membranes, and the other functions with the catalytic domain. As predicted, PH1 interacted specifically with PtdIns(3,4,5)P3, and PH2 did not. However, both PH domains contributed to catalysis independently of recruitment to membranes. None of the PH domains in ARAP1 mediated PtdIns(3,4,5)P3-dependent targeting to plasma membranes (PM). PtdIns(3,4,5)P3 stimulated GAP activity, and the ability to bind PtdIns(3,4,5)P3 was required for ARAP1 to regulate membrane traffic. We propose that ARAP1 is recruited independently of PtdIns(3,4,5)P3 to the PM where PtdIns(3,4,5)P3 subsequently regulates its GAP activity to control endocytic events.  相似文献   

20.
Phosphoinositide 3-kinase (PI3K) mediates essential functions of vascular endothelial growth factor (VEGF), including the stimulation of endothelial cell proliferation and migration. Nevertheless, the mechanisms coupling the receptor VEGFR-2 to PI3K remain obscure. We observed that the Grb2-bound adapter Gab1 is tyrosine-phosphorylated and relocated to membrane fractions upon VEGF stimulation of endothelial cells. We could detect the PI3K regulatory subunit p85 in immunoprecipitates of endogenous Gab1, and vice versa, and measure a Gab1-associated lipid kinase activity upon VEGF stimulation. Furthermore, transfection of the Gab1-YF3 mutant lacking all p85-binding sites strongly repressed PI3K activation measured in vitro. Moreover, Gab1-YF3 severely decreased the cellular amount of phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) generated in response to VEGF. Furthermore, adenoviral expression of Gab1-YF3 suppressed both Akt phosphorylation and recovery of wounded human umbilical vein endothelial cell monolayers, a VEGF-dependent process involving cell migration and proliferation under PI3K control. Transfection of other Gab1 mutants, lacking Grb2-binding sites or the pleckstrin homology (PH) domain, also prevented Akt activation, further demonstrating Gab1 involvement in PI3K activation. These mutants were also used to show that interactions with both Grb2 and PtdIns(3,4,5)P3 mediate Gab1 recruitment by VEGFR-2. Importantly, Gab1 mobilization was impaired by (i) PI3K inhibitors, (ii) deletion of Gab1 PH domain, (iii) PTEN (phosphatase and tensin homolog deleted on chromosome 10) overexpression to repress PtdIns(3,4,5)P3 production, and (iv) overexpression of a competitor PH domain for PtdIns(3,4,5)P3 binding, which altogether demonstrated that PI3K is also an upstream regulator of Gab1. Gab1 thus appears as a primary actor in coupling VEGFR-2 to PI3K/Akt, recruited through an amplification loop involving PtdIns(3,4,5)P3 and its PH domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号