首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.  相似文献   

2.
3.
Histone methylation is believed to play important roles in epigenetic memory in various biological processes. However, questions like whether the methylation marks themselves are faithfully transmitted into daughter cells and through what mechanisms are currently under active investigation. Previously, methylation was considered to be irreversible, but the recent discovery of histone lysine demethylases revealed a dynamic nature of histone methylation regulation on four of the main sites of methylation on histone H3 and H4 tails (H3K4, H3K9, H3K27 and H3K36). Even so, it is still unclear whether demethylases specific for the remaining two sites, H3K79 and H4K20, exist. Furthermore, besides histone proteins, the lysine methylation and demethylation also occur on non-histone proteins, which are probably subjected to similar regulation as histones. This review discusses recent progresses in protein lysine methylation regulation focusing on the above topics, while referring readers to a number of recent reviews for the biochemistry and biology of these enzymes  相似文献   

4.
癌表观遗传调控与癌症治疗   总被引:1,自引:0,他引:1  
基因功能与表达模式异常是癌症的主要特征.日益增多的研究表明,DNA甲基化(DNAmethylation)、组蛋白修饰(histone modification)、染色质重塑(chromatin remodeling)以及microRNAs 介导的基因沉默等表观遗传调控方式的异常与癌症的发生发展密切相关.阐明癌症发生发展...  相似文献   

5.
杂种优势形成的表观遗传学研究进展   总被引:2,自引:0,他引:2  
杂种优势是一种复杂的生物学现象,在农业生产上得到了广泛的应用,但对其形成的遗传机理和分子基础尚不清楚。随着表观遗传学的深入研究,尤其是DNA甲基化、小分子RNA和组蛋白修饰等技术的发展,为杂种优势形成的分子基础提供了新的研究策略和技术手段。DNA甲基化、小分子RNA、组蛋白三者在杂交种中水平的改变与杂种优势有着一定关系,同时,三者之间相互作用调节基因表达影响杂种优势。本文简述了近年来表观遗传学在杂种优势形成中的作用和遗传机制等方面的研究进展,并且提出了目前存在的问题和下一步的研究方向。本综述将有助于从表观遗传学的角度认识杂种优势的形成机理,从而促进对杂种优势的表观遗传学基础的理解及其在植物杂交育种上的应用研究。  相似文献   

6.
This study aimed to identify epigenetic alternations of microRNAs and DNA methylation for gestational diabetes mellitus (GDM) diagnosis and treatment using in silico approach. Data of mRNA and miRNA expression microarray (GSE103552 and GSE104297) and DNA methylation data set (GSE106099) were obtained from the GEO database. Differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs) and differentially methylated genes (DMGs) were obtained by limma package. Functional and enrichment analyses were performed with the DAVID database. The protein‐protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. Simultaneously, a connectivity map (CMap) analysis was performed to screen potential therapeutic agents for GDM. In GDM, 184 low miRNA‐targeting up‐regulated genes and 234 high miRNA‐targeting down‐regulated genes as well as 364 hypomethylation–high‐expressed genes and 541 hypermethylation–low‐expressed genes were obtained. They were mainly enriched in terms of axon guidance, purine metabolism, focal adhesion and proteasome, respectively. In addition, 115 genes (67 up‐regulated and 48 down‐regulated) were regulated by both aberrant alternations of miRNAs and DNA methylation. Ten chemicals were identified as putative therapeutic agents for GDM and four hub genes (IGF1R, ATG7, DICER1 and RANBP2) were found in PPI and may be associated with GDM. Overall, this study identified a series of differentially expressed genes that are associated with epigenetic alternations of miRNA and DNA methylation in GDM. Ten chemicals and four hub genes may be further explored as potential drugs and targets for GDM diagnosis and treatment, respectively.  相似文献   

7.
表观遗传修饰与肿瘤   总被引:15,自引:0,他引:15  
陆嵘  房静远 《生命科学》2006,18(1):10-14
肿瘤的形成受遗传学修饰和表观遗传修饰的影响。长期以来人们一直认为基因突变参与肿瘤的形成,近年来越来越多的证据表明,表观遗传修饰在肿瘤进展中同样具有非常重要的作用。表观遗传调控可以影响基因转录活性而不涉及DNA序列的改变。本文介绍了肿瘤发生发展过程中出现的表观遗传修饰异常,以及通过干预表观遗传修饰治疗肿瘤的应用前景。  相似文献   

8.
表观遗传修饰是生命现象中普遍存在的一类基因调控方式,主要包括DNA甲基化、组蛋白乙酰化和组蛋白甲基化等,通常协同调控基因表达。端粒是位于真核生物染色体末端的保护性结构,在端粒以及亚端粒区域中也存在丰富的表观遗传修饰。随着研究深入,发现表观遗传修饰在调控寿命过程中扮演着重要角色,而揭示衰老的有关机制有助于我们找到延长寿命的方法,具有重大的生物学意义和临床应用前景。  相似文献   

9.
Over the past few years several drugs that target epigenetic modifications have shown clinical benefits, thus seemingly validating epigenetic cancer therapy. More recently, however, it has become clear that these drugs are either characterized by low specificity or that their target enzymes have low substrate specificity. As such, clinical proof-of-concept for epigenetic cancer therapies remains to be established. Human cancers are characterized by widespread changes in their genomic DNA methylation and histone modification patterns. Epigenetic cancer therapy aims to restore normal epigenetic modification patterns through the inhibition of epigenetic modifier enzymes. In this review, we provide an overview about the known functional roles of DNA methyltransferases, histone deacetylases, histone methyltransferases, and demethylases in cancer development. The available data identify several examples that warrant further consideration as drug targets. Future research should be directed toward targeted enzyme inhibition and toward exploring interactions between epigenetic pathways to maximize cancer specificity.  相似文献   

10.
11.
Neural stem cells (NSCs) possess the ability to self-renew and to differentiate along neuronal and glial lineages. These processes are defined by the dynamic interplay between extracellular cues including cytokine signalling and intracellular programmes such as epigenetic modification. There is increasing evidence that epigenetic mechanisms involving, for example, changes in DNA methylation, histone modification and non-coding RNA expression are closely associated with fate specification of NSCs. These epigenetic alterations could provide coordinated systems for regulating gene expression at each step of neural cell differentiation. Here we review the roles of epigenetics in neural fate specification in the mammalian central nervous system.  相似文献   

12.
陈威  杨颖增  陈锋  周文冠  舒凯 《植物学报》1983,54(6):779-785
植物因其固着生长的方式, 已经进化出各类特殊的机制来适应多变的外界环境。为提高自身的存活率, 植物进化出一类胁迫记忆机制, 以适应环境和保护自己。表观遗传修饰不仅能调控植物的正常生长发育, 而且参与植物对各种非生物或生物胁迫的响应。近年的研究表明, 表观遗传修饰在植物胁迫记忆调控中也发挥重要作用。例如, DNA甲基化、组蛋白甲基化及乙酰化等表观遗传修饰参与并维持特定的胁迫记忆。该文主要对表观遗传修饰介导的植物胁迫记忆最新进展进行综述, 并展望未来的重点和热点研究方向。  相似文献   

13.
人恶性黑色素瘤(malignant melanoma)是近年来高发病率和高死亡率的肿瘤之一.目前尚缺乏有效的治疗方法.而表观遗传如DNA甲基化(DNA methylation)、组蛋白修饰(histonemodification)、染色质重塑(chromatin remodeling)及RNA干扰(RNA interference,RNAi)等改变在人黑色素瘤的发生、发展和转移中有重要作用.阐明黑色素瘤发生发展的表观遗传学机制已引起了学者的普遍关注.本文综述了人类黑色素瘤发生发展中所特异的表观遗传改变:CpG岛的异常甲基化修饰、组蛋白甲基化和乙酰化修饰、染色质重塑以及microRNA在黑色素瘤发生和转移中的作用,并对应用表观遗传修饰治疗人类黑色素瘤进行了探讨.  相似文献   

14.
陈威  杨颖增  陈锋  周文冠  舒凯 《植物学报》2019,54(6):779-785
植物因其固着生长的方式, 已经进化出各类特殊的机制来适应多变的外界环境。为提高自身的存活率, 植物进化出一类胁迫记忆机制, 以适应环境和保护自己。表观遗传修饰不仅能调控植物的正常生长发育, 而且参与植物对各种非生物或生物胁迫的响应。近年的研究表明, 表观遗传修饰在植物胁迫记忆调控中也发挥重要作用。例如, DNA甲基化、组蛋白甲基化及乙酰化等表观遗传修饰参与并维持特定的胁迫记忆。该文主要对表观遗传修饰介导的植物胁迫记忆最新进展进行综述, 并展望未来的重点和热点研究方向。  相似文献   

15.
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen‐induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis.  相似文献   

16.
《Epigenetics》2013,8(4):315-325
Epigenetic modifications and microRNAs are known to play key roles in human cancer. For urological tumors, changes in epigenetic modifications and aberrant microRNA profiles have been reported. However, the mechanisms of epigenetic and microRNA regulation are not entirely separable. Increasingly, recent research in these fields overlaps. There seems to be a complicated feedback interrelationship between epigenetic and microRNA regulation that must be highly controlled. Disruptions of this feedback network can have serious consequences for various biological processes and can result in cellular transformation. Investigation of the network between microRNAs and epigenetics could lead to a better understanding of the processes involved in development and progression of urological tumors. This understanding could provide new approaches for the development of novel individualized therapies, which are adjusted to the molecular pattern of a tumor. In this review, we present an overview of microRNA-epigenetic circuits acting in urological tumors.  相似文献   

17.
Context: Colorectal cancer is one of the most common cancers worldwide. Epigenetic alterations play an important role in the pathogenesis of the colorectal cancer.

Objective: This review has focused on the most recent investigations, which has suggested potential epigenetic biomarkers in colorectal cancer.

Methods: Evidences were achieved by searching online medical databases including Google scholar, Pubmed, Scopus and Science Direct.

Results: Extensive studies have indicated that aberrant epigenetic modifications could serve as potential biomarkers for diagnosis, prognosis and prediction of colorectal cancer.

Conclusion: Advances in aberrant epigenetic modifications can open new avenues for exploration of reliable and robust biomarkers to improve the management of CRC patients.  相似文献   


18.
《Epigenetics》2013,8(11):1133-1140
Psychotropic agents are notorious for their ability to increase fat mass in psychiatric patients. The two determinants of fat mass are the production of newly differentiated adipocytes (adipogenesis), and the volume of lipid accumulation. Epigenetic programs have a prominent role in cell fate commitments and differentiation required for adipogenesis. In parallel, epigenetic effects on energy metabolism are well supported by several genetic models. Consequently, a variety of psychotropics, often prescribed in combinations and for long periods, may utilize a common epigenetic effector path causing an increase in adipogenesis or reduction in energy metabolism. In particular, the recent discovery that G protein coupled signaling cascades can directly modify epigenetic regulatory enzymes implicates surface receptor activity by psychotropic medications. The potential therapeutic implications are also suggested by the effects of the clinically approved antidepressant tranylcypromine, also a histone demethylase inhibitor, which has impressive therapeutic effects on metabolism in the obese phenotype.  相似文献   

19.
近年来,表观遗传学(epigenetics)备受关注.表观遗传调控的方式主要包括DNA甲基化、组蛋白修饰和染色质重塑等.ENCODE计划及随后的研究发现,人类基因组中仅有很小一部分DNA序列负责编码蛋白质,而其余大部分被转录为非编码RNA(non-codingRNA,ncRNA).其中长链非编码RNA(long non-codingRNA,lncRNA)是一类长度大于200nt并且缺乏蛋白质编码能力的RNA分子.越来越多的研究表明,lncRNAs能够通过表观遗传调控、转录调控以及转录后调控等多个层面调节基因的表达,从而参与细胞增殖、分化和凋亡等多种生物学过程.本文将着重综述lncRNAs在表观遗传调控中的作用及其最新的研究进展.  相似文献   

20.
Melanoma is a highly heterogeneous cancer that comes in different flavors (lentigo maligna melanoma, superficial spreading melanoma, nodular melanoma, acral lentiginous/mucosal melanoma and other less common subtypes including malignant cellular blue nevus, desmoplastic melanoma, nevoid melanoma, and animal‐type melanoma) and colors (black/bluish or unpigmented). Pathologists have known for many years that melanoma displays notable changes in the nuclear architecture including thick chromatic rims, presence of mitosis, nuclear grooves, and more. It is now evident from other cancers that such changes reflect not only genomic alterations but also non‐genomic changes in both the structure of DNA and the structure of chromatin to which the DNA is bound (nucleosomes). Although aberrant gene expression resulting from DNA methylation has been known for many years, genome alterations resulting from histone modifications became evident in the current decade. In prostate and other cancers, some histone marks have clinical diagnostic and/or prognostic value. Here, we review the current data on epigenetic research in melanoma skin cancers, discuss ways to modify the epigenetic landscape of melanoma for inhibiting its growth, and propose strategies for identifying novel melanoma markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号