首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Moshe Szyf 《Epigenetics》2011,6(8):971-978
Although epidemiological data provides evidence that there is an interaction between genetics (nature) and the social and physical environments (nurture) in human development; the main open question remains the mechanism. The pattern of distribution of methyl groups in DNA is different from cell-type to cell type and is conferring cell specific identity on DNA during cellular differentiation and organogenesis. This is an innate and highly programmed process. However, recent data suggests that DNA methylation is not only involved in cellular differentiation but that it is also involved in modulation of genome function in response to signals from the physical, biological and social environments. We propose that modulation of DNA methylation in response to environmental cues early in life serves as a mechanism of life-long genome “adaptation” that molecularly embeds the early experiences of a child (“nurture”) in the genome (“nature”). There is an emerging line of data supporting this hypothesis in rodents, non-human primates and humans that will be reviewed here. However, several critical questions remain including the identification of mechanisms that transmit the signals from the social environment to the DNA methylation/demethylation enzymes.Key words: DNA methylation, psychiatry, development, epidemiology, environment  相似文献   

2.
Moshe Szyf 《遗传学报》2013,40(7):331-338
The impact of early physical and social environments on life-long phenotypes is well known. Moreover, we have documented evidence for gene–environment interactions where identical gene variants are associated with different phenotypes that are dependent on early life adversity. What are the mechanisms that embed these early life experiences in the genome? DNA methylation is an enzymatically-catalyzed modification of DNA that serves as a mechanism by which similar sequences acquire cell type identity during cellular differentiation and embryogenesis in the same individual. The hypothesis that will be discussed here proposes that the same mechanism confers environmental-exposure specific identity upon DNA providing a mechanism for embedding environmental experiences in the genome, thus affecting long-term phenotypes. Particularly important is the environment early in life including both the prenatal and postnatal social environments.  相似文献   

3.
DNA甲基化是一种重要的表观遗传调控方式,参与对植物生长发育的调控,并在植物逆境胁迫响应中发挥作用。DNA甲基化的建立和维持是胞嘧啶甲基转移酶、染色质重塑酶、组蛋白修饰因子和去甲基化因子等协同作用的结果,环境胁迫能诱导植物体内DNA甲基化状态改变,进而改变基因表达水平和式样,影响植物的适应性。喜旱莲子草是一种恶性入侵植物,种内遗传多样性很低,主要依靠极强的表型可塑性侵占不同水陆生境。对克隆繁殖的喜旱莲子草个体进行不同时间的淹水处理,并用定量PCR方法检测16个DNA甲基化调控基因在不同处理条件下的表达水平和变化趋势,发现其中13个基因在不同处理时间点的表达水平有明显变化,且在淹水植株中多数基因在处理前期被强烈诱导上调表达。运用亚硫酸氢钠测序技术对两个在不同水陆条件下明显差异表达基因(Contig942和Contig23336)的上游启动子区甲基化动态进行分析,发现启动子区多个胞嘧啶位点的甲基化修饰状态在不同水陆条件下及淹水处理的不同时期呈现快速且可逆的动态变化,可能影响这些基因在不同环境条件下的表达水平。本研究结果能帮助了解喜旱莲子草表型可塑性变异和适应性发生的分子机理。  相似文献   

4.
Epigenetics describes the study of stable, reversible alterations to the genome that affect gene expression and genome function, the most studied mechanisms are DNA methylation and histone modifications. Over recent years there has been rapid progress to elucidate the nature and role of the mechanisms involved in promoter hypermethylation during carcinogenesis, however, the mechanism behind one of the earliest epigenetic observations in cancer, genome-wide hypomethylation, remains unclear. Current evidence is divided between the hypotheses that hypomethylation is either an important early cancer-causing aberration or that it is a passive inconsequential side effect of carcinogenesis. With recent discoveries of gene–body methylation, fast cyclic methylation of hormone dependent genes and candidate proteins involved in DNA demethylation elucidation of the role of hypomethylation and the mechanism behind it appears ever closer. With the burgeoning use of DNA methyltransferase inhibitors as a cancer therapy there is an increased need to understand the mechanisms and importance of genome-wide hypomethylation in cancer. This review will discuss the timing and potential causes of genomic hypomethylation during carcinogenesis and will propose a way forward to understand the underlying mechanisms.  相似文献   

5.
Parental effects are a major source of phenotypic plasticity. Moreover, there is evidence from studies with a wide range of species that the relevant parental signals are influenced by the quality of the parental environment. The link between the quality of the environment and the nature of the parental signal is consistent with the idea that parental effects, whether direct or indirect, might serve to influence the phenotype of the offspring in a manner that is consistent with the prevailing environmental demands. In this review we explore recent studies from the field of 'environmental epigenetics' that suggest that (1) DNA methylation states are far more variable than once thought and that, at least within specific regions of the genome, there is evidence for both demethylation and remethylation in post-mitotic cells and (2) that such remodeling of DNA methylation can occur in response to environmentally-driven, intracellular signaling pathways. Thus, studies of variation in mother-offspring interactions in rodents suggest that parental signals operate during pre- and/or post-natal life to influence the DNA methylation state at specific regions of the genome leading to sustained changes in gene expression and function. We suggest that DNA methylation is a candidate mechanism for parental effects on phenotypic variation.  相似文献   

6.
Hattori N  Shiota K 《The FEBS journal》2008,275(8):1624-1630
During mammalian development, it is essential that the proper epigenetic state is established across the entire genome in each differentiated cell. To date, little is known about the mechanism for establishing epigenetic modifications of individual genes during the course of cellular differentiation. Genome-wide DNA methylation analysis of embryonic stem cells by restriction landmark genomic scanning provides information about cell type- and tissue-specific DNA methylation profiles at tissue-specific methylated regions associated with developmental processes. It also sheds light on DNA methylation alterations following fetal exposure to chemical agents. In addition, analysis of embryonic stem cells deficient in epigenetic regulators will contribute to revealing the mechanism for establishing DNA methylation profiles and the interplay between DNA methylation and other epigenetic modifications.  相似文献   

7.

Background

Chronic physical aggression (CPA) is characterized by frequent use of physical aggression from early childhood to adolescence. Observed in approximately 5% of males, CPA is associated with early childhood adverse environments and long-term negative consequences. Alterations in DNA methylation, a covalent modification of DNA that regulates genome function, have been associated with early childhood adversity.

Aims

To test the hypothesis that a trajectory of chronic physical aggression during childhood is associated with a distinct DNA methylation profile during adulthood.

Methods

We analyzed genome-wide promoter DNA methylation profiles of T cells from two groups of adult males assessed annually for frequency of physical aggression between 6 and 15 years of age: a group with CPA and a control group. Methylation profiles covering the promoter regions of 20 000 genes and 400 microRNAs were generated using MeDIP followed by hybridization to microarrays.

Results

In total, 448 distinct gene promoters were differentially methylated in CPA. Functionally, many of these genes have previously been shown to play a role in aggression and were enriched in biological pathways affected by behavior. Their locations in the genome tended to form clusters spanning millions of bases in the genome.

Conclusions

This study provides evidence of clustered and genome-wide variation in promoter DNA methylation in young adults that associates with a history of chronic physical aggression from 6 to 15 years of age. However, longitudinal studies of methylation during early childhood will be necessary to determine if and how this methylation variation in T cells DNA plays a role in early development of chronic physical aggression.  相似文献   

8.
9.
Individuals often differ in their ability to cope with challenging environmental and social conditions. Evidence from model systems suggests that patterns of DNA methylation are associated with variation in coping ability. These associations could arise directly if methylation plays a role in controlling the physiological response to stressors by, among other things, regulating the release of glucocorticoids in response to challenges. Alternatively, the association could arise indirectly if methylation and resilience have a common cause, such as early‐life conditions. In either case, methylation might act as a biomarker for coping ability. At present, however, relatively little is known about whether variation in methylation is associated with organismal performance and resilience under natural conditions. We studied genome‐wide patterns of DNA methylation in free‐living female tree swallows (Tachycineta bicolor) using methylated DNA immunoprecipitation (MeDIP) and a tree swallow genome that was assembled for this study. We identified areas of the genome that were differentially methylated with respect to social signal expression (breast brightness) and physiological traits (ability to terminate the glucocorticoid stress response through negative feedback). We also asked whether methylation predicted resilience to a subsequent experimentally imposed challenge. Individuals with brighter breast plumage and higher stress resilience had lower methylation at differentially methylated regions across the genome. Thus, widespread differences in methylation predicted both social signal expression and the response to future challenges under natural conditions. These results have implications for predicting individual differences in resilience, and for understanding the mechanistic basis of resilience and its environmental and social mediators.  相似文献   

10.
11.
12.
13.
14.
15.
DNA methylation is a major epigenetic marking mechanism regulating various biological functions in mammals and plant. The crucial role of DNA methylation has been observed in cellular differentiation, embryogenesis, genomic imprinting and X‐chromosome inactivation. Furthermore, DNA methylation takes part in disease susceptibility, responses to environmental stimuli and the biodiversity of natural populations. In plant, different types of environmental stress have demonstrated the ability to alter the archetype of DNA methylation through the genome, change gene expression and confer a mechanism of adaptation. DNA methylation dynamics are regulated by three processes de novo DNA methylation, methylation maintenance and DNA demethylation. These processes have their similarities and differences between mammals and plants. Furthermore, the dysregulation of DNA methylation dynamics represents one of the primary molecular mechanisms of developing diseases in mammals. This review discusses the regulation and dysregulation of DNA methylation in plants and mammals. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
17.
18.
γ-Glutamyl hydrolase (GGH) plays an important role in folate homeostasis by catalyzing hydrolysis of polyglutamylated folate into monoglutamates. Polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence, GGH modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, and in chromatin modifications, and aberrant or dysregulation of DNA methylation has been mechanistically linked to the development of human diseases including cancer. Using a recently developed in vitro model of GGH modulation in HCT116 colon and MDA-MB-435 breast cancer cells, we investigated whether GGH modulation would affect global and gene-specific DNA methylation and whether these alterations were associated with significant gene expression changes. In both cell lines, GGH overexpression decreased global DNA methylation and DNA methyltransferase (DNMT) activity, while GGH inhibition increased global DNA methylation and DNMT activity. Epigenomic and gene expression analyses revealed that GGH modulation influenced CpG promoter DNA methylation and gene expression involved in important biological pathways including cell cycle, cellular development, and cellular growth and proliferation. Some of the observed altered gene expression appeared to be regulated by changes in CpG promoter DNA methylation. Our data suggest that the GGH modulation-induced changes in total intracellular folate concentrations and content of long-chain folylpolyglutamates are associated with functionally significant DNA methylation alterations in several important biological pathways.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0444-0) contains supplementary material, which is available to authorized users.  相似文献   

19.
Epigenetic alterations during cellular differentiation are a key molecular mechanism which both instructs and reinforces the process of lineage commitment. Within the haematopoietic system, progressive changes in the DNA methylome of haematopoietic stem cells (HSCs) are essential for the effective production of mature blood cells. Inhibition or loss of function of the cellular DNA methylation machinery has been shown to lead to a severe perturbation in blood production and is also an important driver of malignant transformation. HSCs constitute a very rare cell population in the bone marrow, capable of life-long self-renewal and multi-lineage differentiation. The low abundance of HSCs has been a major technological barrier to the global analysis of the CpG methylation status within both HSCs and their immediate progeny, the multipotent progenitors (MPPs). Within this Extra View article, we review the current understanding of how the DNA methylome regulates normal and malignant hematopoiesis. We also discuss the current methodologies that are available for interrogating the DNA methylation status of HSCs and MPPs and describe a new data set that was generated using tagmentation-based whole genome bisulfite sequencing (TWGBS) in order to comprehensively map methylated cytosines using the limited amount of genomic DNA that can be harvested from rare cell populations. Extended analysis of this data set clearly demonstrates the added value of genome-wide sequencing of methylated cytosines and identifies novel important cis-acting regulatory regions that are dynamically remodeled during the first steps of haematopoietic differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号