首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of the microtubule (MT) motor protein Eg5 results in a mitotic arrest due to the formation of monopolar spindles, making Eg5 an attractive target for anti-cancer therapies. However, Eg5-independent pathways for bipolar spindle formation exist, which might promote resistance to treatment with Eg5 inhibitors. To identify essential components for Eg5-independent bipolar spindle formation, we performed a genome-wide siRNA screen in Eg5-independent cells (EICs). We find that the kinase Aurora A and two kinesins, MCAK and Kif18b, are essential for bipolar spindle assembly in EICs and in cells with reduced Eg5 activity. Aurora A promotes bipolar spindle assembly by phosphorylating Kif15, hereby promoting Kif15 localization to the spindle. In turn, MCAK and Kif18b promote bipolar spindle assembly by destabilizing the astral MTs. One attractive way to interpret our data is that, in the absence of MCAK and Kif18b, excessive astral MTs generate inward pushing forces on centrosomes at the cortex that inhibit centrosome separation. Together, these data suggest a novel function for astral MTs in force generation on spindle poles and how proteins involved in regulating microtubule length can contribute to bipolar spindle assembly.  相似文献   

2.
Microtubules of the mitotic spindle are believed to provide positional cues for the assembly of the actin-based contractile ring and the formation of the subsequent cleavage furrow during cytokinesis. In Caenorhabditis elegans, astral microtubules have been thought to inhibit cortical contraction outside the cleavage furrow. Here, we demonstrate by live imaging and RNA interference (RNAi) that astral microtubules play two distinct roles in initiating cleavage furrow formation. In early anaphase, microtubules are required for contractile ring assembly; in late anaphase, microtubules show different cortical behavior and seem to suppress cortical contraction at the poles, as suggested in previous studies. These two distinct phases of microtubule behavior depend on distinct regulatory pathways, one involving the gamma-tubulin complex and the other requiring aurora-A kinase. We propose that temporal and spatial regulation of two distinct phases of astral microtubule behavior is crucial in specifying the position and timing of furrowing.  相似文献   

3.
BACKGROUND: The regulated assembly of microtubules is essential for bipolar spindle formation. Depending on cell type, microtubules nucleate through two different pathways: centrosome-driven or chromatin-driven. The chromatin-driven pathway dominates in cells lacking centrosomes. RESULTS: Human RHAMM (receptor for hyaluronic-acid-mediated motility) was originally implicated in hyaluronic-acid-induced motility but has since been shown to associate with centrosomes and play a role in astral spindle pole integrity in mitotic systems. We have identified the Xenopus ortholog of human RHAMM as a microtubule-associated protein that plays a role in focusing spindle poles and is essential for efficient microtubule nucleation during spindle assembly without centrosomes. XRHAMM associates both with gamma-TuRC, a complex required for microtubule nucleation and with TPX2, a protein required for microtubule nucleation and spindle pole organization. CONCLUSIONS: XRHAMM facilitates Ran-dependent, chromatin-driven nucleation in a process that may require coordinate activation of TPX2 and gamma-TuRC.  相似文献   

4.
Proper assembly of mitotic spindles requires Hice1, a spindle-associated protein. Hice1 possesses direct microtubule binding activity at its N-terminal region and contributes to intraspindle microtubule nucleation as a subunit of the Augmin complex. However, whether microtubule binding activity of Hice1 is modulated by mitotic regulators remains unexplored. Here, we found that Aurora-A kinase, a major mitotic kinase, specifically binds to and phosphorylates Hice1. We identified four serine/threonine clusters on Hice1 that can be phosphorylated by Aurora-A in vitro. Of the four clusters, the Ser/Thr-17-21 cluster was the most critical for bipolar spindle assembly, whereas other phospho-deficient point mutants had a minimal effect on spindle assembly. Immunostaining with a phospho-Ser-19/20 phospho-specific antibody revealed that phosphorylated Hice1 primarily localizes to spindle poles during prophase to metaphase but gradually diminishes after anaphase. Consistently, the phospho-mimic 17-21E mutant reduced microtubule binding activity in vitro and diminished localization to spindles in vivo. Furthermore, expression of the 17-21E mutant led to decreased association of Fam29a, an Augmin component, with spindles. On the other hand, expression of the phospho-deficient 17-21A mutant permitted intraspindle nucleation but delayed the separation of early mitotic spindle poles and the timely mitotic progression. Taken together, these results suggest that Aurora-A modulates the microtubule binding activity of Hice1 in a spatiotemporal manner for proper bipolar spindle assembly.  相似文献   

5.
Circumstantial evidence has suggested the possibility of microtubule-associated protein (MAP) kinase's involvement in spindle regulation. To test this directly, we asked whether MAP kinase was required for spindle assembly in Xenopus egg extracts. Either the inhibition or the depletion of endogenous p42 MAP kinase resulted in defective spindle structures resembling asters or half-spindles. Likewise, an increase in the length and polymerization of microtubules was measured in aster assays suggesting a role for MAP kinase in regulating microtubule dynamics. Consistent with this, treatment of extracts with either a specific MAP kinase kinase inhibitor or a MAP kinase phosphatase resulted in the rapid disassembly of bipolar spindles into large asters. Finally, we report that mitotic progression in the absence of MAP kinase signaling led to multiple spindle abnormalities in NIH 3T3 cells. We therefore propose that MAP kinase is a key regulator of the mitotic spindle.  相似文献   

6.
Sardon T  Peset I  Petrova B  Vernos I 《The EMBO journal》2008,27(19):2567-2579
The centrosomal kinase Aurora A (AurA) is required for cell cycle progression, centrosome maturation and spindle assembly. However, the way it participates in spindle assembly is still quite unclear. Using the Xenopus egg extract system, we have dissected the role of AurA in the different microtubule (MT) assembly pathways involved in spindle formation. We developed a new tool based on the activation of AurA by TPX2 to clearly define the requirements for localization and activation of the kinase during spindle assembly. We show that localized AurA kinase activity is required to target factors involved in MT nucleation and stabilization to the centrosome, therefore promoting the formation of a MT aster. In addition, AurA strongly enhances MT nucleation mediated by the Ran pathway through cytoplasmic phosphorylation. Altogether, our data show that AurA exerts an effect as a key regulator of MT assembly during M phase and therefore of bipolar spindle formation.  相似文献   

7.
Mammalian oocytes lack centrioles but can generate bipolar spindles using several different mechanisms. For example, mouse oocytes have acentriolar microtubule organization centers (MTOCs) that contain many components of the centrosome, and which initiate microtubule polymerization. On the contrary, human oocytes lack MTOCs and the Ran‐mediated mechanisms may be responsible for spindle assembly. Complete knowledge of the different mechanisms of spindle assembly is lacking in various mammalian oocytes. In this study, we demonstrate that both MTOC‐ and Ran‐mediated microtubule nucleation are required for functional meiotic metaphase I spindle generation in porcine oocytes. Acentriolar MTOC components, including Cep192 and pericentrin, were absent in the germinal vesicle and germinal vesicle breakdown stages. However, they start to colocalize to the spindle microtubules, but are absent in the meiotic spindle poles. Knockdown of Cep192 or inhibition of Polo‐like kinase 1 activity impaired the recruitment of Cep192 and pericentrin to the spindles, impaired microtubule assembly, and decreased the polar body extrusion rate. When the RanGTP gradient was perturbed by the expression of dominant negative or constitutively active Ran mutants, severe defects in microtubule nucleation and cytokinesis were observed, and the localization of MTOC materials in the spindles was abolished. These results demonstrate that the stepwise involvement of MTOC‐ and Ran‐mediated microtubule assembly is crucial for the formation of meiotic spindles in porcine oocytes, indicating the diversity of spindle formation mechanisms among mammalian oocytes.  相似文献   

8.
Microtubule nucleation and formation from the kinetochore/chromatin have been proposed to contribute to bipolar spindle assembly facilitating equal segregation of chromosomes in mitosis. Although two independent pathways involving the small Ran GTPase-TPX2 proteins and the chromosomal passenger complex proteins have been implicated in the formation of microtubules from the kinetochore/chromatin, detailed molecular mechanisms integrating the pathways and regulating the process have not been well elucidated. This study demonstrates that Aurora kinase-A plays a central role in the kinetochore/chromatin associated microtubule assembly in human cells by integrating the two pathways regulating the process. Silencing by siRNA and over expression of a kinase inactive mutant revealed involvement of Aurora-A at two critical steps. These include accumulation of g-tubulin in the vicinity of kinetochore/chromatin to create microtubule nucleation sites as well as INCENP and TPX2 mediated activation of Aurora-A facilitating formation and stabilization of microtubules. The findings provide the first evidence of Aurora-A, in association with INCENP and TPX2, being a key regulator of kinetochore/chromatin associated microtubule formation in human cells.  相似文献   

9.
Multifunctional structural proteins belonging to the 4.1 family are components of nuclei, spindles, and centrosomes in vertebrate cells. Here we report that 4.1 is critical for spindle assembly and the formation of centrosome-nucleated and motor-dependent self-organized microtubule asters in metaphase-arrested Xenopus egg extracts. Immunodepletion of 4.1 disrupted microtubule arrays and mislocalized the spindle pole protein NuMA. Remarkably, assembly was completely rescued by supplementation with a recombinant 4.1R isoform. We identified two 4.1 domains critical for its function in microtubule polymerization and organization utilizing dominant negative peptides. The 4.1 spectrin-actin binding domain or NuMA binding C-terminal domain peptides caused morphologically disorganized structures. Control peptides with low homology or variant spectrin-actin binding domain peptides that were incapable of binding actin had no deleterious effects. Unexpectedly, the addition of C-terminal domain peptides with reduced NuMA binding caused severe microtubule destabilization in extracts, dramatically inhibiting aster and spindle assembly and also depolymerizing preformed structures. However, the mutant C-terminal peptides did not directly inhibit or destabilize microtubule polymerization from pure tubulin in a microtubule pelleting assay. Our data showing that 4.1 is a crucial factor for assembly and maintenance of mitotic spindles and self-organized and centrosome-nucleated microtubule asters indicates that 4.1 is involved in regulating both microtubule dynamics and organization. These investigations underscore an important functional context for protein 4.1 in microtubule morphogenesis and highlight a previously unappreciated role for 4.1 in cell division.  相似文献   

10.
A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle assembly in diverse organisms. However, exactly how Aurora-A controls the microtubule nucleation onto centrosomes is unknown. Here, we show that Aurora-A specifically binds to the COOH-terminal domain of a Drosophila centrosomal protein, centrosomin (CNN), which has been shown to be important for assembly of mitotic spindles and spindle poles. Aurora-A and CNN are mutually dependent for localization at spindle poles, which is required for proper targeting of gamma-tubulin and other centrosomal components to the centrosome. The NH2-terminal half of CNN interacts with gamma-tubulin, and induces cytoplasmic foci that can initiate microtubule nucleation in vivo and in vitro in both Drosophila and mammalian cells. These results suggest that Aurora-A regulates centrosome assembly by controlling the CNN's ability to targeting and/or anchoring gamma-tubulin to the centrosome and organizing microtubule-nucleating sites via its interaction with the COOH-terminal sequence of CNN.  相似文献   

11.
Aurora-A is a serine/threonine protein kinase that plays a role in cell-cycle regulation. The activity of this kinase has been shown to be required for regulating multiple stages of mitotic progression in somatic cells. In this study, the changes in aurora-;A expression were revealed in mouse oocytes using Western blotting. The subcellular localization of aurora-A during oocyte meiotic maturation, fertilization, and early cleavages as well as after antibody microinjection or microtubule assembly perturbance was studied with confocal microscopy. The quantity of aurora-A protein was high in the germinal vesicle (GV) and metaphase II (MII) oocytes and remained stable during other meiotic maturation stages. Aurora-A concentrated in the GV before meiosis resumption, in the pronuclei of fertilized eggs, and in the nuclei of early embryo blastomeres. Aurora-A was localized to the spindle poles of the meiotic spindle from the metaphase I (MI) stage to metaphase II stage. During early embryo development, aurora-A was found in association with the mitotic spindle poles. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. Aurora-A antibody microinjection decreased the rate of germinal vesicle breakdown (GVBD) and distorted MI spindle organization. Our results indicate that aurora-A is a critical regulator of cell-cycle progression and microtubule organization during mouse oocyte meiotic maturation, fertilization, and early embryo cleavage.  相似文献   

12.
Microtubules induced to polymerize with taxol in a mammalian mitotic extract organize into aster-like arrays in a centrosome-independent process that is driven by microtubule motors and structural proteins. These microtubule asters accurately reflect the noncentrosomal aspects of mitotic spindle pole formation. We show here that colonic-hepatic tumor-overexpressed gene (ch-TOGp) is an abundant component of these asters. We have prepared ch-TOGp-specific antibodies and show by immunodepletion that ch-TOGp is required for microtubule aster assembly. Microtubule polymerization is severely inhibited in the absence of ch-TOGp, and silver stain analysis of the ch-TOGp immunoprecipitate indicates that it is not present in a preformed complex and is the only protein removed from the extract during immunodepletion. Furthermore, the reduction in microtubule polymerization efficiency in the absence of ch-TOGp is dependent on ATP. These results demonstrate that ch-TOGp is a major constituent of microtubule asters assembled in a mammalian mitotic extract and that it is required for robust microtubule polymerization in an ATP-dependent manner in this system even though taxol is present. These data, coupled with biochemical and genetic data derived from analysis of ch-TOGp-related proteins in other organisms, indicate that ch-TOGp is a key factor regulating microtubule dynamics during mitosis.  相似文献   

13.
The formation of a functional bipolar mitotic spindle is essential for genetic integrity. In human cells, the microtubule polymerase XMAP215/ch-Tog ensures spindle bipolarity by counteracting the activity of the microtubule-depolymerizing kinesin XKCM1/MCAK. Their antagonistic effects on microtubule polymerization confer dynamic instability on microtubules assembled in cell-free systems. It is, however, unclear if a similar interplay governs microtubule behavior in mammalian cells in vivo. Using real-time analysis of spindle assembly, we found that ch-Tog is required to produce or maintain long centrosomal microtubules after nuclear-envelope breakdown. In the absence of ch-Tog, microtubule assembly at centrosomes was impaired and microtubules were nondynamic. Interkinetochore distances and the lengths of kinetochore fibers were also reduced in these cells. Codepleting MCAK with ch-Tog improved kinetochore fiber length and interkinetochore separation but, surprisingly, did not rescue centrosomal microtubule assembly and microtubule dynamics. Our data therefore suggest that ch-Tog has at least two distinct roles in spindle formation. First, it protects kinetochore microtubules from depolymerization by MCAK. Second, ch-Tog plays an essential role in centrosomal microtubule assembly, a function independent of MCAK activity. Thus, the notion that the antagonistic activities of MCAK and ch-Tog determine overall microtubule stability is too simplistic to apply to human cells.  相似文献   

14.
The Xenopus protein Maskin has been previously identified and characterized in the context of its role in translational control during oocyte maturation. Maskin belongs to the TACC protein family. In other systems, members of this family have been shown to localize to centrosomes during mitosis and play a role in microtubule stabilization. Here we have examined the putative role of Maskin in spindle assembly and centrosome aster formation in the Xenopus egg extract system. Depletion and reconstitution experiments indicate that Maskin plays an essential role for microtubule assembly during M-phase. We show that Maskin interacts with XMAP215 and Eg2, the Xenopus Aurora A kinase in vitro and in the egg extract. We propose that Maskin and XMAP215 cooperate to oppose the destabilizing activity of XKCM1 therefore promoting microtubule growth from the centrosome and contributing to the determination of microtubule steady-state length. Further more, we show that Maskin localization and function is regulated by Eg2 phosphorylation.  相似文献   

15.
Xklp1 is a chromosome-associated kinesin required for Xenopus early embryonic cell division. Function blocking experiments in Xenopus egg extracts suggested that it is required for spindle assembly. We have reinvestigated Xklp1 function(s) by monitoring spindle assembly and microtubule behavior under a range of Xklp1 concentrations in egg extracts. We found that in the absence of Xklp1, bipolar spindles form with a reduced efficiency and display abnormalities associated with an increased microtubule mass. Likewise, centrosomal asters assembled in Xklp1-depleted extract show an increased microtubule mass. Conversely, addition of recombinant Xklp1 to the extract reduces the microtubule mass associated with spindles and asters. Our data suggest that Xklp1 affects microtubule polymerization during M-phase. We propose that these attributes, combined with Xklp1 plus-end directed motility, contribute to the assembly of a functional bipolar spindle.  相似文献   

16.
Aurora-A is a serine/threonine protein kinase that plays important regulatory roles during mitotic cell cycle progression. In this study, Aurora-A expression, subcellular localization, and possible functions during porcine oocyte meiotic maturation, fertilization and early embryonic cleavage were studied by using Western blot, confocal microscopy and drug treatments. The quantity of Aurora-A protein remained stable during porcine oocyte meiotic maturation. Confocal microscopy revealed that Aurora-A distributed abundantly in the nucleus at the germinal vesicle stage. After germinal vesicle breakdown, Aurora-A concentrated around the condensed chromosomes and the metaphase I spindle, and finally, Aurora-A was associated with spindle poles during the formation of the metaphase II spindle. Aurora-A concentrated in the pronuclei in fertilized eggs. Aurora-A was not found in the spindle region when colchicine or staurosporine was used to inhibit microtubule organization, while it accumulated as several dots in the cytoplasm after taxol treatment. In conclusion, Aurora-A may be a multifunctional kinase that plays pivotal regulatory roles in microtubule assembly during porcine oocyte meiotic maturation, fertilization and early embryonic mitosis.  相似文献   

17.
Human TPX2 is required for targeting Aurora-A kinase to the spindle   总被引:24,自引:0,他引:24       下载免费PDF全文
Aurora-A is a serine-threonine kinase implicated in the assembly and maintenance of the mitotic spindle. Here we show that human Aurora-A binds to TPX2, a prominent component of the spindle apparatus. TPX2 was identified by mass spectrometry as a major protein coimmunoprecipitating specifically with Aurora-A from mitotic HeLa cell extracts. Conversely, Aurora-A could be detected in TPX2 immunoprecipitates. This indicates that subpopulations of these two proteins undergo complex formation in vivo. Binding studies demonstrated that the NH2 terminus of TPX2 can directly interact with the COOH-terminal catalytic domain of Aurora-A. Although kinase activity was not required for this interaction, TPX2 was readily phosphorylated by Aurora-A. Upon siRNA-mediated elimination of TPX2 from cells, the association of Aurora-A with the spindle microtubules was abolished, although its association with spindle poles was unaffected. Conversely, depletion of Aurora-A by siRNA had no detectable influence on the localization of TPX2. We propose that human TPX2 is required for targeting Aurora-A kinase to the spindle apparatus. In turn, Aurora-A might regulate the function of TPX2 during spindle assembly.  相似文献   

18.
In cells lacking centrosomes, such as those found in female meiosis, chromosomes must nucleate and stabilize microtubules in order to form a bipolar spindle. Here we report the identification of Dasra A and Dasra B, two new components of the vertebrate chromosomal passenger complex containing Incenp, Survivin, and the kinase Aurora B, and demonstrate that this complex is required for chromatin-induced microtubule stabilization and spindle formation. The failure of microtubule stabilization caused by depletion of the chromosomal passenger complex was rescued by codepletion of the microtubule-depolymerizing kinesin MCAK, whose activity is negatively regulated by Aurora B. By contrast, we present evidence that the Ran-GTP pathway of chromatin-induced microtubule nucleation does not require the chromosomal passenger complex, indicating that the mechanisms of microtubule assembly by these two pathways are distinct. We propose that the chromosomal passenger complex regulates local MCAK activity to permit spindle formation via stabilization of chromatin-associated microtubules.  相似文献   

19.
The production of RanGTP around chromosomes is crucial for spindle microtubule assembly in mitosis. Previous work has shown that hepatoma up-regulated protein (HURP) is a Ran target, required for microtubule stabilization and spindle organization. Here we report a detailed analysis of HURP function in Xenopus laevis mitotic egg extracts. HURP depletion severely impairs bipolar spindle assembly around chromosomes: the few spindles that do form show a significant decrease in microtubule density at the spindle midzone. HURP depletion does not interfere with microtubule growth from purified centrosomes, but completely abolishes microtubule assembly induced by chromatin beads or RanGTP. Simultaneous depletion of the microtubule destabilizer MCAK with HURP does not rescue the phenotype, demonstrating that the effect of HURP is not to antagonize the destabilization activity of MCAK. Although the phenotype of HURP depletion closely resembles that reported for TPX2 depletion, we find no evidence that TPX2 and HURP physically interact or that they influence each other in their effects on spindle microtubules. Our data indicate that HURP and TPX2 have nonredundant functions essential for chromatin-induced microtubule assembly.  相似文献   

20.
Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus ends as well as at plus ends. Here we analyse microtubule assembly relative to the SPBs in haploid yeast cells expressing green fluorescent protein fused to alpha-tubulin, a microtubule subunit. Throughout the cell cycle, analysis of fluorescent speckle marks on cytoplasmic astral microtubules reveals that there is no detectable assembly or disassembly at minus ends. After laser-photobleaching, metaphase spindles recover about 63% of the bleached fluorescence, with a half-life of about 1 minute. After anaphase onset, photobleached marks in the interpolar spindle are persistent and do not move relative to the SPBs. In late anaphase, the elongated spindles disassemble at the microtubule plus ends. These results show for astral and anaphase interpolar spindle microtubules, and possibly for metaphase spindle microtubules, that microtubule assembly and disassembly occur at plus, and not minus, ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号