首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Recent studies have documented that TGF-beta1 takes part in dental pulp tissue repair. Moreover, dental pulp cells have the potential to differentiate into odontoblast-like cells and produce reparative dentine in this process. However, the molecular mechanisms and potential interactions between TGF-beta1 and dental pulp cells are not clear due to the complexity of the pulp/dentine microenvironment. In this study, we investigated the induction of TGF-beta1 on the dental pulp cells in cell culture, tissue culture and three-dimensional culture patterns. These results demonstrated that TGF-beta1 significantly increased the proliferation of cells and activity of ALPase. Dental pulp cells cultured in the presence of TGF-beta1 formed mineralization nodules. In the organ culture, dental pulp cells treated with TGF-beta1 differentiated into odontoblast-like cells and formed a pulp-dentinal complex; and TGF-beta1 significantly induced synthesis of dentine relative proteins DSPP, DMP-1. The dental pulp cells share some characteristics of the odontoblast, such as a parallel arrangement with columnar form and a unilateral cell process. Together, these data indicate that TGF-beta1 can make dental pulp cells differentiated into odontoblast-like cells and form the pulp-dentinal complex. Moreover, these results suggest that TGF-beta1 is an important regulatory factor in odontoblast differentiation during tooth development and pulp repair.  相似文献   

4.
Adult human dental pulp stem cells (hDPSCs) are a unique population of precursor cells those are isolated from postnatal dental pulp and have the ability to differentiate into a variety of cell types utilized for the formation of a reparative dentin-like complex. Using LC-MS/MS proteomics approaches, we identified the proteins secreted from the differentiating hDPSCs in mineralization media. Lysyl oxidase-like 2 (LOXL2) was identified as a protein that was down-regulated in the hDPSCs that differentiate into odontoblast-like cells. The role of LOXL2 has not been studied in dental pulp stem cells. LOXL2 mRNA levels were reduced in differentiating hDPSCs, whereas the levels of other LOX family members including LOX, LOXL1, LOXL3, and LOXL4, are increased. The protein expression and secretion levels of LOXL2 were also decreased during odontogenic differentiation. Recombinant LOXL2 protein treatment to hDPSCs resulted in a dose-dependent decrease in the early differentiation and the mineralization accompanying with the lower levels of odontogenic markers such as DSPP, DMP-1 and ALP. These results suggest that LOXL2 has a negative effect on the differentiation of hDPSCs and blocking LOXL2 can promote the hDPSC differentiation to odontoblasts.  相似文献   

5.
6.
7.
8.
The mineralization of dental pulp stem cells is an important factor in the tissue engineering of teeth, but the mechanism is not yet obvious. This study aimed to identify the effect of Stathmin on the proliferation and osteogenic/odontoblastic differentiation of human dental pulp stem cells (hDPSCs) and to explore whether the Shh signalling pathway was involved in this regulation. First, Stathmin was expressed in the cytoplasm and on the cell membranes of hDPSCs by cell immunofluorescence. Then, by constructing a lentiviral vector, the expression of Stathmin in hDPSCs was inhibited. Treatment with Stathmin shRNA (shRNA‐Stathmin group) inhibited the ability of hDPSCs to proliferate, as demonstrated by a CCK8 assay and flow cytometry analysis, and suppressed the osteogenic/odontoblastic differentiation ability, as demonstrated by alizarin red S staining and osteogenic/odontoblastic differentiation‐related gene (ALP, BSP, OCN, DSPP) activity, compared to that of hDPSCs from the control shRNA group. Molecular analyses showed that the Shh/GLI1 signalling pathway was inhibited when Stathmin was silenced, and purmorphamine, the Shh signalling pathway activator, was added to hDPSCs in the shRNA‐Stathmin group, real‐time PCR and Western blotting confirmed that expression of Shh and its downstream signalling molecules PTCH1, SMO and GLI1 increased significantly. After activating the Shh signalling pathway, the proliferation of hDPSCs increased markedly, as demonstrated by a CCK8 assay and flow cytometry analysis; osteogenic/odontoblastic differentiation‐related gene (ALP, BSP, OCN, DSPP) expression also increased significantly. Collectively, these findings firstly revealed that Stathmin‐Shh/GLI1 signalling pathway plays a positive role in hDPSC proliferation and osteogenic/odontoblastic differentiation.  相似文献   

9.
Dentin sialoprotein (DSP) is cleaved from dentin sialophosphoprotein (DSPP) and most abundant dentinal non-collagenous proteins in dentin. DSP is believed to participate in differentiation and mineralization of cells. In this study, we first constructed recombinant human DSP (rhDSP) in Escherichia coli (E. coli) and investigated its odontoblastic differentiation effects on human dental pulp cells (hDPCs). Cell adhesion activity was measured by crystal violet assay and cell proliferation activity was measured by MTT assay. To assess mineralization activity of rhDSP, Alizarin Red S staining was performed. In addition, the mRNA levels of collagen type ? (Col ?), alkaline phosphatase (ALP), and osteocalcin (OCN) were measured due to their use as mineralization markers for odontoblast-/osteoblast-like differentiation of hDPCs. The obtained rhDSP in E. coli was approximately identified by SDS-PAGE and Western blot. Initially, rhDSP significantly enhanced hDPCs adhesion activity and proliferation (p<0.05). In Alizarin Red S staining, stained hDPCs increased in a time-dependent manner. This odontoblastic differentiation activity was also verified through mRNA levels of odontoblast-related markers. Here, we first demonstrated that rhDSP may be an important regulatory ECM in determining the hDPCs fate including cell adhesion, proliferation, and odontoblastic differentiation activity. These findings indicate that rhDSP can induce growth and differentiation on hDPCs, leading to improve tooth repair and regeneration.  相似文献   

10.
Several members of the transforming growth factor (TGF)-beta superfamily are expressed in developing teeth from the initiation stage through adulthood. Of those, TGF-beta1 regulates odontoblast differentiation and dentin extracellular matrix synthesis. However, the molecular mechanism of TGF-beta3 in dental pulp cells is not clearly understood. In the present study, beads soaked with human recombinant TGF-beta3 induced ectopic mineralization in dental pulp from fetal mouse tooth germ samples, which increased in a dose-dependent manner. Further, TGF-beta3 promoted mRNA expression, and increased protein levels of osteocalcin (OCN) and type I collagen (COL I) in dental pulp cells. We also observed that the expression of dentin sialophosphoprotein and dentin matrix protein 1 was induced by TGF-beta3 in primary cultured dental pulp cells, however, not in calvaria osteoblasts, whereas OCN, osteopontin and osteonectin expression was increased after treatment with TGF-beta3 in both dental pulp cells and calvaria osteoblasts. Dentin sialoprotein was also partially detected in the vicinity of TGF-beta3 soaked beads in vivo. These results indicate for the first time that TGF-beta3 induces ectopic mineralization through upregulation of OCN and COL I expression in dental pulp cells, and may regulate the differentiation of dental pulp stem cells to odontoblasts.  相似文献   

11.
Reparative dentin has a wide variety of manifestations ranging from a regular, tubular form to an irregular, atubular form. However, the characteristics of reparative dentin have not been clarified. This study hypothesized that the level of bone sialoprotein (BSP) expression will increase if the newly formed reparative dentin is bone-like but the dentin sialophosphoprotein (DSPP) level will decrease. In order to test this hypothesis, the expression of BSP and DSP was examined by immunohistochemistry and the expression of BSP was measured by in situ hybridization in an animal model. The pulps of 12 maxillary right first molars from twelve male rats were exposed and capped with MTA. In addition, in order to understand the role of transforming growth factor-beta 1 (TGF-β1) during reparative dentinogenesis, the expression of BSP and DSPP mRNA was analyzed by RT-PCR in a human dental pulp cell culture, and the transforming growth factor-beta 1 receptors (TβRI) and Smad 2/3 were examined by immunofluorescence in an animal model. DSP was expressed in the normal odontoblasts and odontoblast-like cells of the reparative dentin. Interestingly, BSP was strongly expressed in the odontoblast-like cells of reparative dentin. The level of the TβRI and Smad 2/3 proteins was higher in the reparative dentin than in the normal dentin. TGF-β1 up-regulated BSP in the human pulp cell cultures. This suggests that reparative dentin has both dentinogenic and osteogenic characteristics that are mediated by TGF-β1.  相似文献   

12.
13.
14.
Zhao X  He W  Song Z  Tong Z  Li S  Ni L 《Molecular biology reports》2012,39(1):215-220
Mitogen-activated protein kinase (MAPK) pathways are involved in stem cell differentiation. However, the odontoblastic differentiation-inducing effects by mineral trioxide aggregate (MTA) via MAPK pathways have not been clarified in human dental pulp stem cells (DPSCs). In this study we investigated the effects of MTA on cell viability and production of differentiation markers, and the involvement of MAPK signaling pathways in cultured human DPSCs. Cells were cultured with MTA, and the viability and differentiation productions of the cells were determined using the MTT assay and real-time PCR analysis, respectively. MAPK activation was measured by western blotting. MTA at concentrations of 20 and 10 mg/ml was toxic for human DPSCs. MTA significantly increased the expression of alkaline phosphatase (ALP), dentin sialophosphoprotein (DSPP), type I collagen (COLI), osteocalcin (OCN) and bone sialoprotein (BSP) mRNAs and induced the phosphorylation of p42 and p44 (p42/44), p38 and c-Jun N-terminal kinases 1 and 2 (JNK1/2) MAPK. Furthermore, the inhibitor of p42/44 MAPK attenuated the MTA-induced odontoblastic differentiation. These data indicated that MTA-induced odontoblastic differentiation of human DPSCs was via MAPK pathways, which may play a key role in the repair responses of dentin-pulp-like complexes.  相似文献   

15.
16.
The dentin matrix protein-1 (DMP-1) gene is identified in odontoblasts during both embryonic and postnatal development. In vitro study suggests that this noncollagen acidic phosphoprotein plays a role in mineralization. However, deletion of the Dmp-1 gene has little effect on tooth development during embryogenesis. To address the role of DMP-1 in tooth during postnatal development, we analyzed changes of dentinogenesis in Dmp-1 null mice from 3 days after birth to 1 year. Here we show that Dmp-1 null mice postnatally develop a profound tooth phenotype characterized by a partial failure of maturation of predentin into dentin, enlarged pulp chambers, increased width of predentin zone with reduced dentin wall, and hypomineralization. The tooth phenotype of these mice is strikingly similar to that in dentin sialophosphoprotein (Dspp) null mice and shares some features of the human disease dentinogenesis imperfecta III. We have also demonstrated that DSPP levels are reduced in Dmp-1 null mice, suggesting that DSPP is probably regulated by DMP-1 during dentinogenesis. Finally, we show the absence or delayed development of the third molar in Dmp-1 null mice, which is probably secondary to defects in Dmp-1 null bone. Taken together, these studies suggest that DMP-1 is essential for later dentinogenesis during postnatal development.  相似文献   

17.
18.
Recently, transgenic mice that carry a Green Fluorescent Protein (GFP) reporter gene fused to 2.3 kb fragment of rat Col1a1 regulatory sequences (pOBCol2.3GFPemd) were generated. In the present study, we have examined the patterns of expression of Col1a1-2.3-GFP during odontoblast differentiation in this transgenic line. We report that Col1a1-2.3-GFP is expressed in newly differentiated odontoblasts secreting predentin and fully differentiated odontoblasts. The pattern of expression of Col1a1-2.3-GFP in odontoblasts is correlated with that of dentin sialophosphoprotein (DSPP). Col1a1-2.3-GFP is also expressed in the osteoblasts and osteocytes of alveolar bone. The pattern of expression of Col1a1-2.3-GFP in osteocytes is correlated with the expression of Dmp1. These observations indicate the 2.3 kb rat Col1a1 promoter fragment has sufficient strength and specificity to monitor the stage-specific changes during both odontoblast and osteoblast differentiation. We also used coronal pulp tissues isolated from postnatal pOBCol2.3GFPemd transgenic animals to follow their differentiation after transplantation under the kidney capsule. Our observations provide direct evidence that the dental pulp contains competent progenitor cells capable of differentiating into new generations of odontoblast-like cells which express high levels of Col1a1-2.3-GFP and DSPP and secrete tubular containing reparative dentin. We also report that the dental pulp is capable of giving rise to atubular bone-like tissue containing osteocytes expressing high levels of Col1a1-2.3-GFP and Dmp1. Our studies indicate that pOBCol2.3GFPemd transgenic animals provide a powerful tool for direct examination of the underlying mechanisms and the signaling pathways involved in dentin regeneration and repair, stem cell properties and heterogeneity of the dental pulp.  相似文献   

19.
20.
Dental pulp stem cells (DPSCs) are capable of both self-renewal and multilineage differentiation, which play a positive role in dentinogenesis. Studies have shown that tumor necrosis factor-α (TNF-α) is involved in the differentiation of DPSCs under pro-inflammatory stimuli, but the mechanism of action of TNF-α is unknown. Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) is a biomarker of an early inflammatory response that plays a key role in modulating cell differentiation, but the role of RICK in DPSCs is still unclear. In this study, we identified that RICK regulates TNF-α-mediated odontogenic differentiation of DPSCs via the ERK signaling pathway. The expression of the biomarkers of odontogenic differentiation dental matrix protein-1 (DMP-1), dentin sialophosphoprotein (DSPP), biomarkers of odontogenic differentiation, increased in low concentration (1–10 ng/ml) of TNF-α and decreased in high concentration (50–100 ng/ml). Odontogenic differentiation increased over time in the odontogenic differentiation medium. In the presence of 10 ng/L TNF-α, the expression of RICK increased gradually over time, along with odontogenic differentiation. Genetic silencing of RICK expression reduced the expression of odontogenic markers DMP-1 and DSPP. The ERK, but not the NF-κB signaling pathway, was activated during the odontogenic differentiation of DPSCs. ERK signaling modulators decreased when RICK expression was inhibited. PD98059, an ERK inhibitor, blocked the odontogenic differentiation of DPSCs induced by TNF-α. These results provide a further theoretical and experimental basis for the potential use of RICK in targeted therapy for dentin regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号