首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spindle assembly checkpoint (SAC) ensures genome stability by delaying anaphase onset until all the chromosomes have achieved proper spindle attachment. Once correct attachment has been achieved, SAC must be silenced. In the absence of mdf-1/MAD1, an essential SAC component, Caenorhabditis elegans cannot propagate beyond 3 generations. Previously, in a dog-1(gk10)/FANCJ mutator background, we isolated a suppressor of mdf-1(gk2) sterility (such-4) which allowed indefinite propagation in the absence of MDF-1. We showed that such-4 is a Cyclin B3 (cyb-3) duplication. Here we analyze mdf-1 such-4; dog-1, which we propagated for 470 generations, with freezing of samples for long time storage at F170 and F270. Phenotypic analysis of this strain revealed additional suppression of sterility in the absence of MDF-1, beyond the effects of such-4. We applied oligonucleotide array Comparative Genomic Hybridization (oaCGH) and whole genome sequencing (WGS) and identified a further amplification of cyb-3 (triplication) and a new missense mutation in dynein heavy chain (dhc-1). We show that dhc-1(dot168) suppresses the mdf-1(gk2), and is the second cloned suppressor, next to cyb-3 duplication, that does not cause a delay in anaphase onset. We also show that amplification of cyb-3 and dhc-1(dot168) cooperate to increase fitness in the absence of MDF-1.  相似文献   

2.
Tarailo M  Kitagawa R  Rose AM 《Genetics》2007,175(4):1665-1679
The spindle assembly checkpoint (SAC) governs the timing of metaphase-to-anaphase transition and is essential for genome stability. The Caenorhabditis elegans mutant strain gk2 carries a deletion within the mdf-1/MAD1 gene that results in death of the homozygous strain after two or three generations. Here we describe 11 suppressors of the mdf-1(gk2) lethality, 10 identified in an ethyl methanesulfonate (EMS) mutagenesis screen and 1 isolated using the dog-1(gk10) (deletions of guanine-rich DNA) mutator strain. Using time-lapse imaging of early embryonic cells and germline mitotic division, we demonstrate that there are two classes of suppressors. Eight suppressors compensate for the loss of the checkpoint by delaying mitotic progression, which coincides with securin (IFY-1/Pds1) accumulation; three suppressors have normal IFY-1/Pds1 levels and normal anaphase onset. Furthermore, in the class of suppressors with delayed mitotic progression, we have identified four alleles of known suppressors emb-30/APC4 and fzy-1/CDC20, which are components of the anaphase-promoting complex/cyclosome (APC/C). In addition, we have identified another APC/C component capable of bypassing the checkpoint requirement that has not previously been described in C. elegans. The such-1/APC5-like mutation, h1960, significantly delays anaphase onset both in germline and in early embryonic cells.  相似文献   

3.
Stein KK  Davis ES  Hays T  Golden A 《Genetics》2007,175(1):107-123
Temperature-sensitive mutations in subunits of the Caenorhabditis elegans anaphase-promoting complex (APC) arrest at metaphase of meiosis I at the restrictive temperature. Embryos depleted of the APC co-activator FZY-1 by RNAi also arrest at this stage. To identify regulators and potential substrates of the APC, we performed a genetic suppressor screen with a weak allele of the APC subunit MAT-3/CDC23/APC8, whose defects are specific to meiosis. Twenty-seven suppressors that resulted in embryonic viability and larval development at the restrictive temperature were isolated. We have identified the molecular lesions in 18 of these suppressors, which correspond to five genes. In addition to a single intragenic suppressor, we found mutations in the APC co-activator fzy-1 and in three spindle assembly checkpoint genes, mdf-1, mdf-2, and mdf-3/san-1, orthologs of Mad1, Mad2, and Mad3, respectively. Reduction-of-function alleles of mdf-2 and mdf-3 suppress APC mutants and exhibit pleiotropic phenotypes in an otherwise wild-type background. Analysis of a single separation-of-function allele of mdf-1 suggests that MDF-1 has a dual role during development. These studies provide evidence that components of the spindle assembly checkpoint may regulate the metaphase-to-anaphase transition in the absence of spindle damage during C. elegans meiosis.  相似文献   

4.
Here we show that emb-30 is required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. Germline-specific emb-30 mutant alleles block the meiotic divisions. Mutant oocytes, fertilized by wild-type sperm, set up a meiotic spindle but do not progress to anaphase I. As a result, polar bodies are not produced, pronuclei fail to form, and cytokinesis does not occur. Severe-reduction-of-function emb-30 alleles (class I alleles) result in zygotic sterility and lead to germline and somatic defects that are consistent with an essential role in promoting the metaphase-to-anaphase transition during mitosis. Analysis of the vulval cell lineages in these emb-30(class I) mutant animals suggests that mitosis is lengthened and eventually arrested when maternally contributed emb-30 becomes limiting. By further reducing maternal emb-30 function contributed to class I mutant animals, we show that emb-30 is required for the metaphase-to-anaphase transition in many, if not all, cells. Metaphase arrest in emb-30 mutants is not due to activation of the spindle assembly checkpoint but rather reflects an essential emb-30 requirement for M-phase progression. A reduction in emb-30 activity can suppress the lethality and sterility caused by a null mutation in mdf-1, a component of the spindle assembly checkpoint machinery. This result suggests that delaying anaphase onset can bypass the spindle checkpoint requirement for normal development. Positional cloning established that emb-30 encodes the likely C. elegans orthologue of APC4/Lid1, a component of the anaphase-promoting complex/cyclosome, required for the metaphase-to-anaphase transition. Thus, the anaphase-promoting complex/cyclosome is likely to be required for all metaphase-to-anaphase transitions in a multicellular organism.  相似文献   

5.
Tarailo M  Tarailo S  Rose AM 《Genetics》2007,177(4):2525-2530
Here, we report genetic interactions with mdf-1(gk2)/MAD1 in Caenorhabditis elegans. Nine are evolutionarily conserved or phenotypic "interologs" and two are novel enhancers, hcp-1 and bub-3. We show that HCP-1 and HCP-2, the two CENP-F-related proteins, recently implicated in the spindle assembly checkpoint (SAC) function, do not have identical functions, since hcp-1(RNAi), but not hcp-2(RNAi), enhances the lethality of the SAC mutants.  相似文献   

6.
The Mps1 protein kinase is an intriguing and controversial player in centriole assembly. Originally shown to control duplication of the budding yeast spindle pole body, Mps1 is present in eukaryotes from yeast to humans, the nematode C. elegans being a notable exception, and has also been shown to regulate the spindle checkpoint and an increasing number of cellular functions relating to genomic stability. While its function in the spindle checkpoint appears to be both universally conserved and essential in most organisms, conservation of its originally described function in spindle pole duplication has proven controversial, and it is less clear whether Mps1 is essential for centrosome duplication outside of budding yeast. Recent studies of Mps1 have identified at least two distinct functions for Mps1 in centriole assembly, while simultaneously supporting the notion that Mps1 is dispensable for the process. However, the fact that at least one centrosomal substrate of Mps1 is conserved from yeast to humans down to the phosphorylation site, combined with evidence demonstrating the exquisite control exerted over centrosomal Mps1 levels suggest that the notion of being essential may not be the most important of distinctions.  相似文献   

7.
Saccharomyces cerevisiae MPS1 encodes an essential protein kinase that has roles in spindle pole body (SPB) duplication and the spindle checkpoint. Previously characterized MPS1 mutants fail in both functions, leading to aberrant DNA segregation with lethal consequences. Here, we report the identification of a unique conditional allele, mps1-8, that is defective in SPB duplication but not the spindle checkpoint. The mutations in mps1-8 are in the noncatalytic region of MPS1, and analysis of the mutant protein indicates that Mps1-8p has wild-type kinase activity in vitro. A screen for dosage suppressors of the mps1-8 conditional growth phenotype identified the gene encoding the integral SPB component SPC42. Additional analysis revealed that mps1-8 exhibits synthetic growth defects when combined with certain mutant alleles of SPC42. An epitope-tagged version of Mps1p (Mps1p-myc) localizes to SPBs and kinetochores by immunofluorescence microscopy and immuno-EM analysis. This is consistent with the physical interaction we detect between Mps1p and Spc42p by coimmunoprecipitation. Spc42p is a substrate for Mps1p phosphorylation in vitro, and Spc42p phosphorylation is dependent on Mps1p in vivo. Finally, Spc42p assembly is abnormal in a mps1-1 mutant strain. We conclude that Mps1p regulates assembly of the integral SPB component Spc42p during SPB duplication.  相似文献   

8.
The Caenorhabditis elegans ortholog of the Fanconi anemia pathway component J (FANCJ) is DOG-1, which is essential for genome stability. Previous studies have shown that disruption of the dog-1 gene generates small deletions of poly-C/poly-G tracts detectable by PCR and results in a mutator phenotype. In this paper, we describe the isolation and characterization of lethal mutations resulting from the loss of dog-1 function. The mutant strains were analyzed using a combination of techniques including genetic mapping, SNP mapping, and oaCGH (oligo array Comparative Genome Hybridization). Using the eT1 balancer system to recover lethal mutants, we isolated, in addition to small deletions, large chromosomal rearrangements, including duplications, translocations and deficiencies. The forward mutation frequency was 10-fold higher than the spontaneous frequency for eT1, and equivalent to that observed for low doses of standard mutagens. From a screen for suppressors of mdf-1/MAD1 lethality, we previously had isolated such-4(h2168), shown here to be a large tandem duplication. Thus, the range of mutational events caused by lack of DOG-1/FANCJ is much broader than previously described.  相似文献   

9.
纺锤体装配检验点是有丝分裂分裂过程中一个非常重要的监督机器,其作用在于有丝分裂中期向后期转化前将所有的染色体排列到中期板上.近年来的研究表明,该检验点缺陷与肿瘤发生密切相关.单极纺锤体蛋白激酶1是纺锤体装配检验点的必需基因,存在于正常分裂细胞,并在肿瘤组织中高表达.最近研究发现,单极纺锤体蛋白激酶1的表达水平与乳腺癌恶性程度相关. 更有意思的是抑制其激酶活性或降低其蛋白水平将会导致多种肿瘤细胞的纺锤体装配检验点功能缺陷和细胞死亡.这表明,单极纺锤体蛋白激酶1是一个潜在的抗癌药物新靶标.本文对单极纺锤体蛋白激酶1如何调控纺锤体装配检验点以及其在抗肿瘤应用研究中的最新进展进行了回顾.  相似文献   

10.
In Saccharomyces cerevisiae, the Mps1p protein kinase is critical for both spindle pole body (SPB) duplication and the mitotic spindle assembly checkpoint. The mps1–1 mutation causes failure early in SPB duplication, and because the spindle assembly checkpoint is also compromised, mps1–1 cells proceed with a monopolar mitosis and rapidly lose viability. Here we report the genetic and molecular characterization of mps1–1 and five new temperature-sensitive alleles of MPS1. Each of the six alleles contains a single point mutation in the region of the gene encoding the protein kinase domain. The mutations affect several residues conserved among protein kinases, most notably the invariant glutamate in subdomain III. In vivo and in vitro kinase activity of the six epitope-tagged mutant proteins varies widely. Only two display appreciable in vitro activity, and interestingly, this activity is not thermolabile under the assay conditions used. While five of the six alleles cause SPB duplication to fail early, yielding cells with a single SPB, mps1–737 cells proceed into SPB duplication and assemble a second SPB that is structurally defective. This phenotype, together with the observation of intragenic complementation between this unique allele and two others, suggests that Mps1p is required for multiple events in SPB duplication.  相似文献   

11.
12.
We report here the isolation and molecular characterization of the Drosophila homolog of the mitotic checkpoint control protein Bub3. The Drosophila Bub3 protein is associated with the centromere/kinetochore of chromosomes in larval neuroblasts whose spindle assembly checkpoints have been activated by incubation with the microtubule-depolymerizing agent colchicine. Drosophila Bub3 is also found at the kinetochore regions in mitotic larval neuroblasts and in meiotic primary and secondary spermatocytes, with the strong signal seen during prophase and prometaphase becoming increasingly weaker after the chromosomes have aligned at the metaphase plate. We further show that the localization of Bub3 to the kinetochore is disrupted by mutations in the gene encoding the Drosophila homolog of the spindle assembly checkpoint protein Bub1. Combined with recent findings showing that the kinetochore localization of Bub1 conversely depends upon Bub3, these results support the hypothesis that the spindle assembly checkpoint proteins exist as a multiprotein complex recruited as a unit to the kinetochore. In contrast, we demonstrate that the kinetochore constituents Zw10 and Rod are not needed for the binding of Bub3 to the kinetochore. This suggests that the kinetochore is assembled in at least two relatively independent pathways. Received: 6 August 1998 / Accepted: 28 August 1998  相似文献   

13.
Saccharomyces Sac3 required for actin assembly was shown to be involved in DNA replication. Here, we studied the function of a mammalian homologue SHD1 in cell cycle progression. SHD1 is localized on centrosomes at interphase and at spindle poles and mitotic spindles, similar to alpha-tubulin, at M phase. RNA interference suppression of endogenous shd1 caused defects in centrosome duplication and spindle formation displaying cells with a single apparent centrosome and down-regulated Mad2 expression, generating increased micronuclei. Conversely, increased expression of SHD1 by DNA transfection with shd1-green fluorescent protein (gfp) vector for a fusion protein of SHD1 and GFP caused abnormalities in centrosome duplication displaying cells with multiple centrosomes and deregulated spindle assembly with up-regulated Mad2 expression until anaphase, generating polyploidy cells. These results demonstrated that shd1 is involved in cell cycle progression, in particular centrosome duplication and a spindle assembly checkpoint function.  相似文献   

14.
M Murone  V Simanis 《The EMBO journal》1996,15(23):6605-6616
Premature initiation of cytokinesis can lead to loss of chromosomes, and 'cutting' of the nucleus. Therefore, the proper spatial and temporal co-ordination of mitosis and cytokinesis is essential for maintaining the integrity of the genome. The fission yeast cdc16 gene is implicated both in the spindle assembly checkpoint and control of septum formation. To identify other proteins involved in these controls, we have isolated multicopy suppressors of the cdc16-116 mutation, and the characterization of one of these, dma1 (defective in mitotic arrest), is presented here. dma1 is not an essential gene, but in a dma1 null background (dma1-D1) the function of the spindle assembly checkpoint is compromised. If assembly of the spindle is prevented, dma1-D1 cells do not arrest, the activity of cdc2 kinase decays and cells form a division septum without completing a normal mitosis. dma1-D1 cells also show an increased rate of chromosome loss during exponential growth. Upon ectopic expression from an inducible promoter, dma1p delays progress through mitosis and inhibits septum formation, giving rise to elongated, multinucleate cells. We propose that dma1 is a component of the spindle assembly checkpoint, required to prevent septum formation and premature exit from mitosis if spindle function is impaired.  相似文献   

15.

Background

The spindle checkpoint delays the onset of anaphase until all sister chromatids are aligned properly at the metaphase plate. To investigate the role san-1, the MAD3 homologue, has in Caenorhabditis elegans embryos we used RNA interference (RNAi) to identify genes synthetic lethal with the viable san-1(ok1580) deletion mutant.

Results

The san-1(ok1580) animal has low penetrating phenotypes including an increased incidence of males, larvae arrest, slow growth, protruding vulva, and defects in vulva morphogenesis. We found that the viability of san-1(ok1580) embryos is significantly reduced when HCP-1 (CENP-F homologue), MDF-1 (MAD-1 homologue), MDF-2 (MAD-2 homologue) or BUB-3 (predicted BUB-3 homologue) are reduced by RNAi. Interestingly, the viability of san-1(ok1580) embryos is not significantly reduced when the paralog of HCP-1, HCP-2, is reduced. The phenotype of san-1(ok1580);hcp-1(RNAi) embryos includes embryonic and larval lethality, abnormal organ development, and an increase in abnormal chromosome segregation (aberrant mitotic nuclei, anaphase bridging). Several of the san-1(ok1580);hcp-1(RNAi) animals displayed abnormal kinetochore (detected by MPM-2) and microtubule structure. The survival of mdf-2(RNAi);hcp-1(RNAi) embryos but not bub-3(RNAi);hcp-1(RNAi) embryos was also compromised. Finally, we found that san-1(ok1580) and bub-3(RNAi), but not hcp-1(RNAi) embryos, were sensitive to anoxia, suggesting that like SAN-1, BUB-3 has a functional role as a spindle checkpoint protein.

Conclusion

Together, these data suggest that in the C. elegans embryo, HCP-1 interacts with a subset of the spindle checkpoint pathway. Furthermore, the fact that san-1(ok1580);hcp-1(RNAi) animals had a severe viability defect whereas in the san-1(ok1580);hcp-2(RNAi) and san-1(ok1580);hcp-2(ok1757) animals the viability defect was not as severe suggesting that hcp-1 and hcp-2 are not completely redundant.  相似文献   

16.
The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation by delaying anaphase onset until all sister kinetochores are attached to bipolar spindles. An RNA interference screen for synthetic genetic interactors with a conserved SAC gene, san-1/MAD3, identified spdl-1, a Caenorhabditis elegans homologue of Spindly. SPDL-1 protein localizes to the kinetochore from prometaphase to metaphase, and this depends on KNL-1, a highly conserved kinetochore protein, and CZW-1/ZW10, a component of the ROD–ZW10–ZWILCH complex. In two-cell–stage embryos harboring abnormal monopolar spindles, SPDL-1 is required to induce the SAC-dependent mitotic delay and localizes the SAC protein MDF-1/MAD1 to the kinetochore facing away from the spindle pole. In addition, SPDL-1 coimmunoprecipitates with MDF-1/MAD1 in vivo. These results suggest that SPDL-1 functions in a kinetochore receptor of MDF-1/MAD1 to induce SAC function.  相似文献   

17.
Budding yeast Mps1p kinase has been implicated in both the duplication of microtubule-organizing centers and the spindle assembly checkpoint. Here we show that hMps1, the human homolog of yeast Mps1p, is a cell cycle-regulated kinase with maximal activity during M phase. hMps1 localizes to kinetochores and its activity and phosphorylation state increase upon activation of the mitotic checkpoint. By antibody microinjection and siRNA, we demonstrate that hMps1 is required for human cells to undergo checkpoint arrest in response to microtubule depolymerization. In contrast, centrosome (re-)duplication as well as cell division occur in the absence of hMps1. We conclude that hMps1 is required for the spindle assembly checkpoint but not for centrosome duplication.  相似文献   

18.
A variety of spindle and kinetochore defects have been shown to induce a mitotic delay through activation of the spindle checkpoint. With the aim of identifying novel mitotic defects we carried out a mad1 synthetic lethal screen in budding yeast. In this screen, four novel alleles of sfi1 were isolated. SFI1 is an essential gene, previously identified through its interaction with centrin/CDC31 and shown to be required for spindle pole body (SPB) duplication. The new mutations were all found in the C-terminal domain of Sfi1p, which has no known function, but it is well conserved among budding yeasts. Analysis of the novel sfi1 mutants, through a combination of light and electron microscopy, revealed duplicated SPBs <0.3 microm apart. Importantly, these SPBs have completed duplication, but they are not separated, suggesting a possible defect in splitting of the bridge. We discuss possible roles for Sfi1p in this step in bipolar spindle assembly.  相似文献   

19.
20.
The conserved Bub1/Bub3 complex is recruited to the kinetochore region of mitotic chromosomes, where it initiates spindle checkpoint signaling and promotes chromosome alignment. Here we show that, in contrast to the expectation for a checkpoint pathway component, the BUB-1/BUB-3 complex promotes timely anaphase onset in Caenorhabditis elegans embryos. This activity of BUB-1/BUB-3 was independent of spindle checkpoint signaling but required kinetochore localization. BUB-1/BUB-3 inhibition equivalently delayed separase activation and other events occurring during mitotic exit. The anaphase promotion function required BUB-1’s kinase domain, but not its kinase activity, and this function was independent of the role of BUB-1/BUB-3 in chromosome alignment. These results reveal an unexpected role for the BUB-1/BUB-3 complex in promoting anaphase onset that is distinct from its well-studied functions in checkpoint signaling and chromosome alignment, and suggest a new mechanism contributing to the coordination of the metaphase-to-anaphase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号