首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mechanisms of epigenetic inheritance   总被引:5,自引:0,他引:5  
  相似文献   

3.
Epigenetic regulation may involve heritable chromatin states, but how chromatin features can be inherited through DNA replication is incompletely understood. We address this question using cell-free replication of chromatin. Previously, we showed that a Polycomb group complex, PRC1, remains continuously associated with chromatin through DNA replication. Here we investigate the mechanism of persistence. We find that a single PRC1 subunit, Posterior sex combs (PSC), can reconstitute persistence through DNA replication. PSC binds nucleosomes and self-interacts, bridging nucleosomes into a stable, oligomeric structure. Within these structures, individual PSC-chromatin contacts are dynamic. Stable association of PSC with chromatin, including through DNA replication, depends on PSC-PSC interactions. Our data suggest that labile individual PSC-chromatin contacts allow passage of the DNA replication machinery while PSC-PSC interactions prevent PSC from dissociating, allowing it to rebind to replicated chromatin. This mechanism may allow inheritance of chromatin proteins including PRC1 through DNA replication to maintain chromatin states.  相似文献   

4.
Kress C  Thomassin H  Grange T 《FEBS letters》2001,494(3):135-140
  相似文献   

5.
Chromosomal replication results in the duplication not only of DNA sequence but also of the patterns of histone modification, DNA methylation, and nucleoprotein structure that constitute epigenetic information. Pericentromeric heterochromatin in human cells is characterized by unique patterns of histone and DNA modification. Here, we describe association of the Mi-2/NuRD complex with specific segments of pericentromeric heterochromatin consisting of Satellite II/III DNA located on human chromosomes 1, 9, and 16 in some but not all cell types. This association is linked in part to DNA replication and chromatin assembly and may suggest a role in these processes. Mi-2/NuRD accumulation is independent of Polycomb association and is characterized by a unique pattern of histone modification. We propose that Mi-2/NuRD constitutes an enzymatic component of a pathway for assembly and maturation of chromatin utilized by rapidly proliferating lymphoid cells for replication of constitutive heterochromatin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
8.
9.
Recent studies in yeast, animals and plants have provided major breakthroughs in unraveling the molecular mechanism of higher-order gene regulation. In conjunction with the DNA code, proteins that are involved in chromatin remodeling, histone modification and epigenetic imprinting form a large network of interactions that control the nuclear programming of cell identity. New insight into how chromatin conformations are regulated in plants sheds light on the relationships between chromosome function, cell differentiation and developmental patterns.  相似文献   

10.
11.
12.
13.
Replication of genomic material is a process that requires not only high fidelity in the duplication of DNA sequences but also inheritance of the chromatin states. In the last few years enormous effort has been put into elucidating the mechanisms involved in the correct propagation of chromatin states. From all these studies it emerges that an epigenetic network is at the base of this process. A coordinated interplay between histone modifications and histone variants, DNA methylation, RNA components, ATP-dependent chromatin remodeling, and histone-specific assembly factors regulates establishment of the replication timing program, initiation of replication, and propagation of chromatin domains. The aim of this review is to examine, in light of recent findings, how so many players can be coordinated with each other to achieve the same goal, a correct inheritance of the chromatin state.  相似文献   

14.
Polycomb group complexes, which are known to regulate homeotic genes, have now been found to control hundreds of other genes in mammals and insects. First believed to progressively assemble and package chromatin, they are now thought to be localized, but induce a methylation mark on histone H3 over a broad chromatin domain. Recent progress has changed our view of how these complexes are recruited, and how they affect chromatin and repress gene activity. Polycomb complexes function as global enforcers of epigenetically repressed states, balanced by an antagonistic state that is mediated by Trithorax. These epigenetic states must be reprogrammed when cells become committed to differentiation.  相似文献   

15.
The historic arguments for the participation of eukaryotic DNA replication in the control of gene expression are reconsidered along with more recent evidence. An earlier view in which gene commitment was achieved with stable chromatin structures which required DNA replication to reset expression potential (D. D. Brown, Cell 37:359-365, 1984) is further considered. The participation of nonspecific stable repressor of gene activity (histones and other chromatin proteins), as previously proposed, is reexamined. The possible function of positive trans-acting factors is now further developed by considering evidence from DNA virus models. It is proposed that these positive factors act to control the initiation of replicon-specific DNA synthesis in the S phase (early or late replication timing). Stable chromatin assembles during replication into potentially active (early S) or inactive (late S) states with prevailing trans-acting factors (early) or repressing factors (late) and may asymmetrically commit daughter templates. This suggests logical schemes for programming differentiation based on replicons and trans-acting initiators. This proposal requires that DNA replication precede major changes in gene commitment. Prior evidence against a role for DNA replication during terminal differentiation is reexamined along with other results from terminal differentiation of lower eukaryotes. This leads to a proposal that DNA replication may yet underlie terminal gene commitment, but that for it to do so there must exist two distinct modes of replication control. In one mode (mitotic replication) replicon initiation is tightly linked to the cell cycle, whereas the other mode (terminal replication) initiation is not cell cycle restricted, is replicon specific, and can lead to a terminally differentiated state. Aberrant control of mitotic and terminal modes of DNA replication may underlie the transformed state. Implications of a replicon basis for chromatin structure-function and the evolution of metazoan organisms are considered.  相似文献   

16.
17.
18.
19.
20.
The opposing actions of polycomb (PcG) and trithorax group (trxG) gene products maintain essential gene expression patterns during Drosophila development. PcG proteins are thought to establish repressive chromatin structures, but the mechanisms by which this occurs are not known. Polycomb repressive complex 1 (PRC1) contains several PcG proteins and inhibits chromatin remodeling by trxG-related SWI/SNF complexes. We have defined a functional core of PRC1 by reconstituting a stable complex using four recombinant PcG proteins. One subunit, PSC, can also inhibit chromatin remodeling on its own. These PcG proteins create a chromatin structure that has normal nucleosome organization and is accessible to nucleases but excludes hSWI/SNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号