首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between cell division and plant form has long been a battleground for the debate between those proclaiming and disclaiming an important role for cell division in morphogenetic and developmental processes. Recent evidence suggests that cell division and morphogenesis are intimately interconnected, and whereas overall architecture is determined by patterning genes, the elaboration and execution of developmental programmes require proper control of the cell-division cycle.  相似文献   

2.
 This paper couples a general d-dimensional (d arbitrary) model for the intracellular biochemistry of a generic cell with a probabilistic division hypothesis and examines the consequence of division for stability of cell function and structure. We show rather surprisingly that cell division is capable of giving rise to a stable population of cells with respect to function and structure even if, in the absence of cell division, the underlying biochemical dynamics are unstable. In the context of a simple example, our stability condition suggests that rapid cell proliferation plays a stabilizing role for cellular populations. Received: 15 January 1996 / Revised version: 31 July 1998  相似文献   

3.
细胞不对称分裂是多细胞生物发育的基础。细胞不对称分裂的重要特征是细胞命运决定子在细胞分裂期间的不对称分离。细胞不对称分裂一般要经历4个步骤:在细胞中建立一个极性轴;沿此轴定向并形成纺锤体;细胞命运决定子沿极性轴作极性分布;细胞分裂后,不同的细胞命运决定子指导决定细胞的不同命运。  相似文献   

4.
The precise spatial and temporal control of bacterial cell division is achieved through the balanced actions of factors that inhibit assembly of the tubulin-like protein FtsZ at aberrant subcellular locations or promote its assembly at the future sites of division. In Bacillus subtilis, the membrane anchored cell division protein EzrA, interacts directly with FtsZ to prevent aberrant FtsZ assembly at cell poles and contributes to the inherently dynamic nature of the cytokinetic ring. Recent work suggests EzrA also serves as a scaffolding protein to coordinate lateral growth with cell wall biosynthesis through interactions with a host of proteins, a finding consistent with EzrA''s four extensive coiled-coil domains. In a previous study we identified a conserved patch of residues near EzrA''s C-terminus (the QNR motif) that are critical for maintenance of a dynamic cytokinetic ring, but dispensable for EzrA-mediated inhibition of FtsZ assembly at cell poles. In an extension of this work, here we report that EzrA''s two C-terminal coiled-coils function in concert with the QNR motif to mediate interactions with FtsZ and maintain the dynamic nature of the cytokinetic ring. In contrast, EzrA''s two N-terminal coiled-coils are dispensable for interaction between EzrA and FtsZ in vitro and in vivo, but required for EzrA mediated inhibition of FtsZ assembly at cell poles. Finally, chimeric analysis indicates that EzrA''s transmembrane anchor plays a generic role: concentrating EzrA at the plasma membrane where presumably it can most effectively modulate FtsZ assembly.  相似文献   

5.
Synchronous cultures of Escherichia coli strain B/r were used to investigate the relationship between deoxyribonucleic acid (DNA) replication and cell division. We have determined that terminal steps in division can proceed in the absence of DNA synthesis. Inhibition of DNA replication with nalidixic acid prior to the start of a new round of replication does not stop cell division, which indicates that the start of the round is not essential in triggering cell division. Inhibition of DNA replication at any time prior to the termination of a round of replication completely blocks cell division, which suggests that there may be a link between the end of the replication cycle and the commitment of the cell to divide. Studies that use a temperature-sensitive mutant which is unable to synthesize DNA at the nonpermissive temperature are in complete agreement with those that use nalidixic acid to inhibit DNA synthesis. This adds support to the idea that the treatments employed limit their action to DNA synthesis. Investigation of minicell production indicates that the production of minicells is blocked when DNA synthesis is inhibited with nalidixic acid. Although nuclear segregation is not required for cell division, DNA synthesis is still required to trigger division. The evidence presented suggests strongly that (i) DNA synthesis is essential for cell division, (ii) the end of a round of replication triggers cell division, and (iii) there is considerable time lapse (one-half generation) between the completion of a round of DNA replication and physical separation of the cells.  相似文献   

6.
Oriented cell division is a fundamental determinant of tissue organization. Simple epithelia divide symmetrically in the plane of the monolayer to preserve organ structure during epithelial morphogenesis and tissue turnover. For this to occur, mitotic spindles must be stringently oriented in the Z-axis, thereby establishing the perpendicular division plane between daughter cells. Spatial cues are thought to play important roles in spindle orientation, notably during asymmetric cell division. The molecular nature of the cortical cues that guide the spindle during symmetric cell division, however, is poorly understood. Here we show directly for the first time that cadherin adhesion receptors are required for planar spindle orientation in mammalian epithelia. Importantly, spindle orientation was disrupted without affecting tissue cohesion or epithelial polarity. This suggests that cadherin receptors can serve as cues for spindle orientation during symmetric cell division. We further show that disrupting cadherin function perturbed the cortical localization of APC, a microtubule-interacting protein that was required for planar spindle orientation. Together, these findings establish a novel morphogenetic function for cadherin adhesion receptors to guide spindle orientation during symmetric cell division.  相似文献   

7.
Drugs that target microtubules are thought to inhibit cell division and cell migration by suppressing dynamic instability, a “search and capture” behavior that allows microtubules to probe their environment. Here, we report that subtoxic drug concentrations are sufficient to inhibit plus-end microtubule dynamic instability and cell migration without affecting cell division or microtubule assembly. The higher drug concentrations needed to inhibit cell division act through a novel mechanism that generates microtubule fragments by stimulating microtubule minus-end detachment from their organizing centers. The frequency of microtubule detachment in untreated cells increases at prophase suggesting that it is a regulated cellular process important for spindle assembly and function. We conclude that drugs produce differential dose-dependent effects at microtubule plus and minus-ends to inhibit different microtubule-mediated functions.  相似文献   

8.
The establishment of a vertebrate body plan during embryogenesis is achieved through precise coordination of cell proliferation and morphogenetic cell movements. Here we show that nitric oxide (NO) suppresses cell division and facilitates cell movements during early development of Xenopus, such that inhibition of NO synthase (NOS) increases proliferation in the neuroectoderm and suppresses convergent extension in the axial mesoderm and neuroectoderm. NO controls cell division and cell movement through two separate signaling pathways. Both rely on RhoA-ROCK signaling but can be distinguished by the involvement of either guanylate cyclase or the planar cell polarity regulator Dishevelled. Through the cGMP-dependent pathway, NO suppresses cell division by negatively regulating RhoA and controlling the nuclear distribution of ROCK and p21WAF1. Through the cGMP-independent pathway, NO facilitates cell movement by regulating the intracellular distribution and level of Dishevelled and the activity of RhoA, thereby controlling the activity of ROCK and regulating actin cytoskeleton remodeling and cell polarization. Concurrent control by NO helps ensure that the crucial processes of cell proliferation and morphogenetic movements are coordinated during early development.  相似文献   

9.
The production of neurons to form the mammalian cortex, known as embryonic cortical neurogenesis, is a complex developmental process. Insight into the process of cell division during neurogenesis is provided by murine cortical cell lineage trees, recorded through experimental observation. Recurring patterns within cell lineage trees may be indicative of predetermined cell behaviour. The application of mathematical modelling to this process requires careful consideration and identification of the key features to be incorporated into the model. A biologically plausible stochastic model of evolution of cell lineage trees is developed, based on the most important known features of neurogenesis. Tractable means of measuring lineage tree shape are discussed. Symmetry is identified as a significant feature of shape and is measured using Colless's Index of Imbalance. Distributions of tree size and imbalance for large tree sizes are computed and results compared to experimental data. Several refinements to the model are investigated, when the cell division probabilities are weighted according to cell generation. Two models involving generation-dependent cell division probabilities produce imbalance distributions which are the most consistent with the available experimental results. The results indicate that a stochastic cell division mechanism is a plausible basis of mammalian neurogenesis.  相似文献   

10.
Generative cell division in tricellular pollen grains of Sambucusnigra L. (Caprifoliaceae) has been examined with light and electronmicroscopy. During division the generative cell is located inthe centre of the pollen grain, near to the nucleus of a surroundingvegetative cell. Conventional mitosis of the generative cellis followed by cytokinesis through centrifugal cell plate formation.Two sister sperm cells remain in spatial contact with each otherand are surrounded, as formerly their progenitor cell was, bythe vegetative cell. From the changes of shape of the generativecell during division and of the sperm cells it may be assumedthat the space between these cells and the vegetative one containsa labile, non-rigid, wall material. No plastids have been observedin the generative cell and its mitochondria appear to be unequallydistributed between the two future sperm cells during division. Sambucus nigra L., generative cell division, pollen, sperm cell association  相似文献   

11.
12.
The equal partitioning of cell mass between daughters is the usual and expected outcome of cytokinesis for self-renewing cells. However, most studies of partitioning during cell division have focused on daughter cell shape symmetry or segregation of chromosomes. Here, we use live cell interferometry (LCI) to quantify the partitioning of daughter cell mass during and following cytokinesis. We use adherent and non-adherent mouse fibroblast and mouse and human lymphocyte cell lines as models and show that, on average, mass asymmetries present at the time of cleavage furrow formation persist through cytokinesis. The addition of multiple cytoskeleton-disrupting agents leads to increased asymmetry in mass partitioning which suggests the absence of active mass partitioning mechanisms after cleavage furrow positioning.  相似文献   

13.
The key processes of the bacterial cell cycle are controlled and coordinated to match cellular mass growth. We have studied the coordination between replication and cell division by using a temperature-controlled Escherichia coli intR1 strain. In this strain, the initiation time for chromosome replication can be displaced to later (underreplication) or earlier (overreplication) times in the cell cycle. We used underreplication conditions to study the response of cell division to a delayed initiation of replication. The bacteria were grown exponentially at 39°C (normal DNA/mass ratio) and shifted to 38 and 37°C. In the last two cases, new, stable, lower DNA/mass ratios were obtained. The rate of replication elongation was not affected under these conditions. At increasing degrees of underreplication, increasing proportions of the cells became elongated. Cell division took place in the middle in cells of normal size, whereas the longer cells divided at twice that size to produce one daughter cell of normal size and one three times as big. The elongated cells often produced one daughter cell lacking a chromosome; this was always the smallest daughter cells, and it was the size of a normal newborn cell. These results favor a model in which cell division takes place at only distinct cell sizes. Furthermore, the elongated cells had a lower probability of dividing than the cells of normal size, and they often contained more than two nucleoids. This suggests that for cell division to occur, not only must replication and nucleoid partitioning be completed, but also the DNA/mass ratio must be above a certain threshold value. Our data support the ideas that cell division has its own control system and that there is a checkpoint at which cell division may be abolished if previous key cell cycle processes have not run to completion.  相似文献   

14.
Recent evidence that a syntaxin is required for cytokinesis in Caenorhabditis elegans embryos suggests that the mechanism of cell division in plant and animal cells may be more similar than previously imagined.  相似文献   

15.
Cell division is an essential cellular process that requires an array of known and unknown proteins for its spatial and temporal regulation. Here we develop a novel, high-throughput screening method for the identification of bacterial cell division genes and regulators. The method combines the over-expression of a shotgun genomic expression library to perturb the cell division process with high-throughput flow cytometry sorting to screen many thousands of clones. Using this approach, we recovered clones with a filamentous morphology for the model bacterium, Escherichia coli. Genetic analysis revealed that our screen identified both known cell division genes, and genes that have not previously been identified to be involved in cell division. This novel screening strategy is applicable to a wide range of organisms, including pathogenic bacteria, where cell division genes and regulators are attractive drug targets for antibiotic development.  相似文献   

16.
Cell division and cell fate decisions are highly regulated processes that need to be coordinated both spatially and temporally for correct plant growth and development. Gaining a deeper molecular and cellular understanding of these links is especially relevant for plant biology since, unlike in animals, formation of new organs is a process that takes place after embryogenesis and continues throughout the entire plant lifespan. The recent identification of a novel factor, GEM, has provided a molecular framework that coordinates cell division to cell fate in the Arabidopsis epidermis. GEM is an inhibitor of cell division through interacting with CDT1, a DNA replication protein. It also inhibits the expression of the homeobox GLABRA2 (GL2) gene that determines the hair/non-hair fate and the pavement/trichome fate in the root and leaf epidermis, respectively. GEM seems to be crucial in controlling the balance of activating/repressing histone modifications at its target promoters.Key Words: cell division, cell cycle, cell fate, GEM, GLABRA2, CDT1, DNA replication, chromatin, histone methylation, gene expression, root hair, Arabidopsis, plant  相似文献   

17.
During development one mechanism for generating different cell types is asymmetric cell division, by which a cell divides and contributes different factors to each of its daughter cells. Asymmetric cell division occurs through out the eukaryotic kingdom, from yeast to humans. Many asymmetric cell divisions occur in a defined orientation. This implies a cellular mechanism for sensing direction, which must ultimately lead to differences in gene expression between two daughter cells. In this review, we describe two classes of molecules: regulatory factors that are differentially expressed upon asymmetric cell division, and components of a signal transduction pathway that may define cell polarity. The lin-11 and mec-3 genes of C. elegans, the Isl-1 gene of mammals and the HO gene of yeast, encode regulatory factors that determine cell type of one daughter after asymmetric cell division. The CDC24 and CDC42 genes of yeast affect both bud positioning and orientation of mating projections, and thus may define a general cellular polarity. We speculate that molecules such as Cdc24 and Cdc42 may regulate expression of genes such as lin-11, mec-3, Isl-1 and HO upon asymmetric cell division.  相似文献   

18.
SYNOPSIS. Spathidium spathula is very sensitive to division inhibition after X-irradiation. Five kr delivered to animals 1 hr into the cell cycle prolong the period until the next division to about 2 times the normal length. The next 2 cell cycles, however, are shorter than normal, and by the 4th division irradiated cells have recovered the normal division rate. During this division delay, scanning interference microscopy shows that growth in dry mass continues; at the 1st post-irradiation division the cells average 3 times the normal dry mass. After the 2nd post-irradiation division, dry mass is 1.5 times the normal amount. Dry mass measurements were not made beyond the 2nd division. Giant cells produced by X-rays have enlarged macronuclei, indicating that DNA synthesis is not inhibited by a dose of X-rays that blocks division. Mitomycin C and triethylene melamine, agents which attack or damage DNA, also produce division blockage and giantism in Spathidium. This suggests that damage to DNA in either the macronucleus, the micronucleus or other organelles may be much more effective in delaying cell division than cell growth.  相似文献   

19.
Cell migration in the intestinal crypt is essential for the regular renewal of the epithelium, and the continued upward movement of cells is a key characteristic of healthy crypt dynamics. However, the driving force behind this migration is unknown. Possibilities include mitotic pressure, active movement driven by motility cues, or negative pressure arising from cell loss at the crypt collar. It is possible that a combination of factors together coordinate migration. Here, three different computational models are used to provide insight into the mechanisms that underpin cell movement in the crypt, by examining the consequence of eliminating cell division on cell movement. Computational simulations agree with existing experimental results, confirming that migration can continue in the absence of mitosis. Importantly, however, simulations allow us to infer mechanisms that are sufficient to generate cell movement, which is not possible through experimental observation alone. The results produced by the three models agree and suggest that cell loss due to apoptosis and extrusion at the crypt collar relieves cell compression below, allowing cells to expand and move upwards. This finding suggests that future experiments should focus on the role of apoptosis and cell extrusion in controlling cell migration in the crypt.  相似文献   

20.
Cytokinesis is the final stage of cell division in which the daughter cells separate. Although a growing body of evidence suggests that cell migration-induced traction forces may be required to provide physical assistance for daughter cells to dissociate during abscission, the role of cell migration in cytokinesis has not been directly elucidated. Recently, we have demonstrated that Crk and paxillin, which are pivotal components of the cell migration machinery, localize to the midbody and are essential for the abscission. These findings provided an important link between the cell migration and cytokinesis machineries and prompted us to dissect the role of cell migration in cytokinesis. We show that cell migration controls the kinetics of cleavage furrowing, midbody extension and abscission and coordinates proper subcellular redistribution of Crk and syntaxin-2 to the midbody after ingression.Key words: cell migration, cytokinesis, midbody, abscission, cleavage furrow, Crk, paxillin, syntaxin-2, ExoT  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号