首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, it has been reported that PHD fingers of MEKK1 kinase and a family of viral and cellular membrane proteins have E3 ubiquitin ligase activity. Here we describe unique sequence and structural signatures that distinguish PHD fingers from RING fingers, which function primarily as E3 ubiquitin ligases, and demonstrate that the Zn-binding modules of the above proteins are distinct versions of the RING domain rather than PHD fingers. Thus, currently available data reveal extreme versatility of RINGs and their derivatives that function as E3 ubiquitin ligases but provide no evidence of this activity among PHD fingers whose principal function appears to involve specific protein-protein and possibly protein-DNA interactions in chromatin.  相似文献   

2.
The DNA damage checkpoint pathway governs how cells regulate cell cycle progression in response to DNA damage. A screen for suppressors of a fission yeast chk1 mutant defective in the checkpoint pathway identified a novel Schizosaccharomyces pombe protein, Msc1. Msc1 contains 3 plant homeodomain (PHD) finger motifs, characteristically defined by a C4HC3 consensus similar to RING finger domains. PHD finger domains in viral proteins and in the cellular protein kinase MEKK1 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1) have been implicated as ubiquitin E3 protein ligases that affect protein stability. The close structural relationship of PHD fingers to RING fingers suggests that other PHD domain-containing proteins might share this activity. We show that each of the three PHD fingers of Msc1 can act as ubiquitin E3 ligases, reporting for the first time that PHD fingers from a nuclear protein exhibit E3 ubiquitin ligase activity. The function of the PHD fingers of Msc1 is needed to rescue the DNA damage sensitivity of a chk1Delta strain. Msc1 co-precipitates Rhp6, the S. pombe homologue of the human ubiquitin-conjugating enzyme Ubc2. Strikingly, deletion of msc1 confers complete suppression of the slow growth phenotype, UV and hydroxyurea sensitivities of an rhp6 deletion strain and restores deficient histone H3 methylation observed in the rhp6Delta mutant. We speculate that the target of the E3 ubiquitin ligase activity of Msc1 is likely to be a chromatin-associated protein.  相似文献   

3.
PHD domains and E3 ubiquitin ligases: viruses make the connection   总被引:9,自引:0,他引:9  
PHD domains constitute a widely distributed subfamily of zinc fingers whose biochemical functions have been unclear until now. Recently, several PHD-containing viral proteins have been identified that promote immune evasion by downregulating proteins that govern immune recognition. Studies show that these viral regulators lead to ubiquitination of their targets by functioning as E3 ubiquitin ligases -- an activity that requires the PHD motif. These are the first examples linking the PHD domain to E3 activity, but the recent discovery of PHD-dependent E3 activity in the cellular kinase MEKK1 and the close structural relation of PHD domains to RING fingers hint that many other PHD proteins might share this activity.  相似文献   

4.
The PHD finger, a nuclear protein-interaction domain   总被引:14,自引:0,他引:14  
The PHD finger is a common structural motif found in all eukaryotic genomes. It is a Zn(2+)-binding domain and its closest structural relative is the RING domain. Many RING fingers bind to E2 ligases to mediate the ubiquitination of proteins. Whether PHD fingers share a common function is unclear. Notably, many if not all PHD fingers are found in nuclear proteins whose substrate tends to be chromatin. Some PHD fingers bind to specific nuclear protein partners, apparently through the same surface that is used by RING domains to bind their cognate E2 ligases. New evidence also suggests that some PHD fingers bind to nucleosomes, raising the possibility that chromatin might be a common nuclear ligand of PHD fingers.  相似文献   

5.
Mutations in the autoimmune regulator protein AIRE1 cause a monogenic autosomal recessively inherited disease: autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE1 is a multidomain protein that harbors two plant homeodomain (PHD)-type zinc fingers. The first PHD finger of AIRE1 is a mutational hot spot, to which several pathological point mutations have been mapped. Using heteronuclear NMR spectroscopy, we determined the solution structure of the first PHD finger of AIRE1 (AIRE1-PHD1), and characterized the peptide backbone mobility of the domain. We performed a conformational analysis of pathological AIRE1-PHD1 mutants that allowed us to rationalize the structural impact of APECED-causing mutations and to identify an interaction site with putative protein ligands of the AIRE1-PHD1 domain. The structure unequivocally exhibits the canonical PHD finger fold, with a highly conserved tryptophan buried inside the structure. The PHD finger is stabilized by two zinc ions coordinated in an interleaved (cross-brace) scheme. This zinc coordination resembles RING finger domains, which can function as E3 ligases in the ubiquitination pathway. Based on this fold similarity, it has been suggested that PHD fingers might also function as E3 ligases, although this hypothesis is controversial. At variance to a previous report, we could not find any evidence that AIRE1-PHD1 has an intrinsic E3 ubiquitin ligase activity, nor detect any direct interaction between AIRE1-PHD1 and its putative cognate E2. Consistently, we show that the AIRE1-PHD1 structure is clearly distinct from the RING finger fold. Our results point to a function of the AIRE1-PHD1 domain in protein-protein interactions, which is impaired in some APECED mutations.  相似文献   

6.
It was already known that both mind bomb (mib) and mind bomb-2 (mib2) encode E3 ubiquitin ligases that target Delta in Notch activation. Here we further demonstrated that zebrafish Mib and Mib2, similar to their mouse orthologs, have a C-terminal-most RING finger-dependent E3 ubiquitin ligase activity. Mib and Mib2 are reciprocal E3 ubiquitin ligases and substrates. They function similarly in Notch signaling by using DeltaC as a common substrate. However, Mib2 behaves differently from Mib in DeltaD internalization. In addition, Mib and Mib2 bind differently to extracellular and intracellular parts of DeltaA and DeltaC. Finally, mutant Mibs, Mib(ta52b) with a missense mutation in the C-terminal-most RING finger (M1013R) and Mib(m132) with a premature stop codon that leads to a deletion of three RING fingers (C785stop), act dominant-negatively and compete with Mib2 in DeltaC ubiquitylation and internalization, suggesting a molecular basis for the antimorphic phenotypes (stronger than the null phenotypes) observed in zebrafish mib(ta52b) and mib(m132) alleles.  相似文献   

7.
Cbl proteins (Cbl, Cbl-b and Cbl-c) are ubiquitin ligases that are critical regulators of tyrosine kinase signaling. In this study we identify a new Cbl-c interacting protein, Hydrogen peroxide Induced Construct 5 (Hic-5). The two proteins interact through a novel interaction mediated by the RING finger of Cbl-c and the LIM2 domain of Hic-5. Further, this interaction is mediated and dependent on specific zinc coordinating complexes within the RING finger and LIM domain. Binding of Hic-5 to Cbl-c leads to an increase in the ubiquitin ligase activity of Cbl-c once Cbl-c has been activated by Src phosphorylation or through an activating phosphomimetic mutation. In addition, co-transfection of Hic-5 with Cbl-c leads to an increase in Cbl-c mediated ubiquitination of the EGFR. These data suggest that Hic-5 enhances Cbl-c ubiquitin ligase activity once Cbl-c has been phosphorylated and activated. Interactions between heterologous RING fingers have been shown to activate E3s. This is the first demonstration of enhancement of ubiquitin ligase activity of a RING finger ubiquitin ligase by the direct interaction of a LIM zinc coordinating domain.  相似文献   

8.
Protein ubiquitination plays an important role in regulating the abundance and conformation of a broad range of eukaryotic proteins. This process involves a cascade of enzymes including ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). E1 and E2 represent two families of structurally related proteins and are relatively well characterized. In contrast, the nature and mechanism of E3, proposed to contain activities in catalyzing isopeptide bond formation (ubiquitin ligation) and substrate targeting, remains inadequately understood. Two major families of E3 ubiquitin ligases, the HECT (for homologous to E6-AP C terminus) family and the RING family, have been identified that utilize distinct mechanisms in promoting isopeptide bond formation. Here, we showed that purified RING finger domain of ROC1, an essential subunit of SKP1-cullin/CDC53-F box protein ubiquitin ligases, was sufficient to activate UBCH5c to synthesize polyubiquitin chains. The sequence flanking the RING finger in ROC1 did not contribute to UBCH5c activation, but was required for binding with CUL1. We demonstrated that all cullins, through their binding with ROC proteins, constituted active ubiquitin ligases, suggesting the existence in vivo of a large number of cullin-RING ubiquitin ligases. These results are consistent with the notion that the RING finger domains allosterically activate E2. We suggest that RING-E2, rather than cullin-RING, constitutes the catalytic core of the ubiquitin ligase and that one major function of the cullin subunit is to assemble the RING-E2 catalytic core and substrates together.  相似文献   

9.
RING for destruction?   总被引:26,自引:0,他引:26  
Ubiquitination targets proteins for degradation and is a potent regulator of cellular protein function. Recent results implicate the RING finger domain in specific ubiquitination events; it is possible that all RING proteins act as E3 ubiquitin protein ligases, with implications for a variety of biological areas.  相似文献   

10.
Proteasome-dependent degradation of ubiquitinated proteins plays a key role in many important cellular processes. Ubiquitination requires the E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and frequently a substrate-specific ubiquitin protein ligase (E3). One class of E3 ubiquitin ligases has been shown to contain a common zinc-binding RING finger motif. We have previously shown that herpes simplex virus type 1 ICP0, itself a RING finger protein, induces the proteasome-dependent degradation of several cellular proteins and induces the accumulation of colocalizing conjugated ubiquitin in vivo. We now report that both full-length ICP0 and its isolated RING finger domain induce the accumulation of polyubiquitin chains in vitro in the presence of E1 and the E2 enzymes UbcH5a and UbcH6. Mutations within the RING finger region that abolish the in vitro ubiquitination activity also cause severe reductions in ICP0 activity in other assays. We conclude that ICP0 has the potential to act as an E3 ubiquitin ligase during viral infection and to target specific cellular proteins for destruction by the 26S proteasome.  相似文献   

11.
Covalent attachment of small ubiquitin-like modifier (SUMO) to proteins regulates multiple processes in the eukaryotic cell. In numerous cases sumoylation is facilitated by protein inhibitor of activated STAT (PIAS) proteins, characterized by the presence of a SP-RING domain related to the RING finger of many ubiquitin E3 ligases. The importance of SP-RING relies on its capacity to bind the E2 enzyme of the pathway. Additional domains may participate in SUMO ligase function and target selection. We have studied the Arabidopsis SUMO ligase AtSIZ1, belonging to the PIAS family, and describe self-sumoylation and AtSIZ1-mediated sumoylation of the E2 enzyme AtSCE1 and GTE3, a bromodomain protein interacting with AtSIZ1. Modification of GTE3 modulates its capacity to bind acetyl-histone H3 in vitro. Interestingly, AtSIZ1, as other plant PIAS proteins, also includes a PHD domain. We found that the PHD domain binds AtSCE1 and contributes to the SUMO ligase function, being partially and absolutely required for AtSCE1 and GTE3 sumoylation, respectively. Based on the capacity of AtSCE1 and GTE3 to associate with both the PHD and SP-RING domains, we propose a model of interactions to explain AtSIZ1-mediated sumoylation of GTE3 and ligase function of the PHD domain.  相似文献   

12.
BackgroundThe ubiquitin system is a modification process with many different cellular functions including immune signaling and antiviral functions. E3 ubiquitin ligases are enzymes that recruit an E2 ubiquitin-conjugating enzyme bound to ubiquitin in order to catalyze the transfer of ubiquitin from the E2 to a protein substrate. The RING E3s, the most abundant type of ubiquitin ligases, are characterized by a zinc (II)-binding domain called RING (Really Interesting New Gene). Viral replication requires modifying and hijacking key cellular pathways within host cells such as cellular ubiquitination. There are well-established examples where a viral proteins bind to RING E3s, redirecting them to degrade otherwise long-lived host proteins or inhibiting E3’s ubiquitination activity. Recently, three binary interactions between SARS-CoV-2 proteins and innate human immune signaling Ε3 RING ligases: NSP15-RNF41, ORF3a-TRIM59 and NSP9-MIB1 have been experimentally established.MethodsIn this work, we have investigated the mode of the previous experimentally supported NSP15-RNF41, ORF3a,-TRIM59 and NSP9-MIB1 binary interactions by in silico methodologies intending to provide structural insights of E3-virus interplay that can help identify potential inhibitors that could block SARS-CoV-2 infection of immune cells.ConclusionIn silico methodologies have shown that the above human E3 ligases interact with viral partners through their Zn(II) binding domains. This RING mediated formation of stable SARS-CoV-2-E3 complexes indicates a critical structural role of RING domains in immune system disruption by SARS-CoV-2-infection.Data AvailabilityThe data used to support the findings of this research are included within the article and are labeled with references.  相似文献   

13.
The ubiquitin-signaling pathway utilizes E1 activating, E2 conjugating, and E3 ligase enzymes to sequentially transfer the small modifier protein ubiquitin to a substrate protein. During the last step of this cascade different types of E3 ligases either act as scaffolds to recruit an E2 enzyme and substrate (RING), or form an ubiquitin-thioester intermediate prior to transferring ubiquitin to a substrate (HECT). The RING-inBetweenRING-RING (RBR) proteins constitute a unique group of E3 ubiquitin ligases that includes the Human Homologue of Drosophila Ariadne (HHARI). These E3 ligases are proposed to use a hybrid RING/HECT mechanism whereby the enzyme uses facets of both the RING and HECT enzymes to transfer ubiquitin to a substrate. We now present the solution structure of the HHARI RING2 domain, the key portion of this E3 ligase required for the RING/HECT hybrid mechanism. The structure shows the domain possesses two Zn2+-binding sites and a single exposed cysteine used for ubiquitin catalysis. A structural comparison of the RING2 domain with the HECT E3 ligase NEDD4 reveals a near mirror image of the cysteine and histidine residues in the catalytic site. Further, a tandem pair of aromatic residues exists near the C-terminus of the HHARI RING2 domain that is conserved in other RBR E3 ligases. One of these aromatic residues is remotely located from the catalytic site that is reminiscent of the location found in HECT E3 enzymes where it is used for ubiquitin catalysis. These observations provide an initial structural rationale for the RING/HECT hybrid mechanism for ubiquitination used by the RBR E3 ligases.  相似文献   

14.
The linear ubiquitin chain assembly complex (LUBAC) is a RING E3 ligase that regulates immune and inflammatory signalling pathways. Unlike classical RING E3 ligases, LUBAC determines the type of ubiquitin chain being formed, an activity normally associated with the E2 enzyme. We show that the RING-in-between-RING (RBR)-containing region of HOIP-the catalytic subunit of LUBAC-is sufficient to generate linear ubiquitin chains. However, this activity is inhibited by the N-terminal portion of the molecule, an inhibition that is released upon complex formation with HOIL-1L or SHARPIN. Furthermore, we demonstrate that HOIP transfers ubiquitin to the substrate through a thioester intermediate formed by a conserved cysteine in the RING2 domain, supporting the notion that RBR ligases act as RING/HECT hybrids.  相似文献   

15.
The tumor‐suppressor protein BRCA1 works with BARD1 to catalyze the transfer of ubiquitin onto protein substrates. The N‐terminal regions of BRCA1 and BARD1 that contain their RING domains are responsible for dimerization and ubiquitin ligase activity. This activity is a common feature among hundreds of human RING domain‐containing proteins. RING domains bind and activate E2 ubiquitin‐conjugating enzymes to promote ubiquitin transfer to substrates. We show that the identity of residues at specific positions in the RING domain can tune activity levels up or down. We report substitutions that create a structurally intact BRCA1/BARD1 heterodimer that is inactive in vitro with all E2 enzymes. Other substitutions in BRCA1 or BARD1 RING domains result in hyperactivity, revealing that both proteins have evolved attenuated activity. Loss of attenuation results in decreased product specificity, providing a rationale for why nature has tuned BRCA1 activity. The ability to tune BRCA1 provides powerful tools for understanding its biological functions and provides a basis to assess mechanisms for rescuing the activity of cancer‐associated variations. Beyond the applicability to BRCA1, we show the identity of residues at tuning positions that can be used to predict and modulate the activity of an unrelated RING E3 ligase. These findings provide valuable insights into understanding the mechanism and function of RING E3 ligases like BRCA1.  相似文献   

16.
Early cellular events associated with tumorigenesis often include loss of cell cycle checkpoints or alteration in growth signaling pathways. Identification of novel genes involved in cellular proliferation may lead to new classes of cancer therapeutics. By screening a tetracycline-inducible cDNA library in A549 cells for genes that interfere with proliferation, we have identified a fragment of UHRF1 (ubiquitin-like protein containing PHD and RING domains 1), a nuclear RING finger protein, that acts as a dominant negative effector of cell growth. Reduction of UHRF1 levels using an UHRF1-specific shRNA decreased growth rates in several tumor cell lines. In addition, treatment of A549 cells with agents that activated different cell cycle checkpoints resulted in down-regulation of UHRF1. The primary sequence of UHRF1 contains a PHD and a RING motif, both of which are structural hallmarks of ubiquitin E3 ligases. We have confirmed using an in vitro autoubiquitination assay that UHRF1 displays RING-dependent E3 ligase activity. Overexpression of a GFP-fused UHRF1 RING mutant that lacks ligase activity sensitizes cells to treatment with various chemotherapeutics. Taken together, our results suggest a general requirement for UHRF1 in tumor cell proliferation and implicate the RING domain of UHRF1 as a functional determinant of growth regulation.  相似文献   

17.
Tripartite motif (TRIM) proteins comprise a large family of RING‐type ubiquitin E3 ligases that regulate important biological processes. An emerging general model is that TRIMs form elongated antiparallel coiled‐coil dimers that prevent interaction of the two attendant RING domains. The RING domains themselves bind E2 conjugating enzymes as dimers, implying that an active TRIM ligase requires higher‐order oligomerization of the basal coiled‐coil dimers. Here, we report crystal structures of the TRIM23 RING domain in isolation and in complex with an E2–ubiquitin conjugate. Our results indicate that TRIM23 enzymatic activity requires RING dimerization, consistent with the general model of TRIM activation.  相似文献   

18.
Kraft E  Stone SL  Ma L  Su N  Gao Y  Lau OS  Deng XW  Callis J 《Plant physiology》2005,139(4):1597-1611
Attachment of ubiquitin to substrate proteins is catalyzed by the three enzymes E1, E2 (ubiquitin conjugating [UBC]), and E3 (ubiquitin ligase). Forty-one functional proteins with a UBC domain and active-site cysteine are predicted in the Arabidopsis (Arabidopsis thaliana) genome, which includes four that are predicted or shown to function with ubiquitin-like proteins. Only nine were previously characterized biochemically as ubiquitin E2s. We obtained soluble protein for 22 of the 28 uncharacterized UBCs after expression in Escherichia coli and demonstrated that 16 function as ubiquitin E2s. Twelve, plus three previously characterized ubiquitin E2s, were also tested for the ability to catalyze ubiquitination in vitro in the presence of one of 65 really interesting new gene (RING) E3 ligases. UBC22, UBC19-20, and UBC1-6 had variable levels of E3-independent activity. Six UBCs were inactive with all RINGs tested. Closely related UBC8, 10, 11, and 28 were active with the largest number of RING E3s and with all RING types. Expression analysis was performed to determine whether E2s or E3s were expressed in specific organs or under specific environmental conditions. Closely related E2s show unique patterns of expression and most express ubiquitously. Some RING E3s are also ubiquitously expressed; however, others show organ-specific expression. Of all the organs tested, RING mRNAs are most abundant in floral organs. This study demonstrates that E2 diversity includes examples with broad and narrow specificity toward RINGs, and that most ubiquitin E2s are broadly expressed with each having a unique spatial and developmental pattern of expression.  相似文献   

19.
Approximately 5% of the Arabidopsis (Arabidopsis thaliana) proteome is predicted to be involved in the ubiquitination/26S proteasome pathway. The majority of these predicted proteins have identity to conserved domains found in E3 ligases, of which there are multiple types. The RING-type E3 is characterized by the presence of a cysteine-rich domain that coordinates two zinc atoms. Database searches followed by extensive manual curation identified 469 predicted Arabidopsis RING domain-containing proteins. In addition to the two canonical RING types (C3H2C3 or C3HC4), additional types of modified RING domains, named RING-v, RING-D, RING-S/T, RING-G, and RING-C2, were identified. The modified RINGs differ in either the spacing between metal ligands or have substitutions at one or more of the metal ligand positions. The majority of the canonical and modified RING domain-containing proteins analyzed were active in in vitro ubiquitination assays, catalyzing polyubiquitination with the E2 AtUBC8. To help identity regions of the proteins that may interact with substrates, domain analyses of the amino acids outside the RING domain classified RING proteins into 30 different groups. Several characterized protein-protein interaction domains were identified, as well as additional conserved domains not described previously. The two largest classes of RING proteins contain either no identifiable domain or a transmembrane domain. The presence of such a large and diverse number of RING domain-containing proteins that function as ubiquitin E3 ligases suggests that target-specific proteolysis by these E3 ligases is a complex and important part of cellular regulation in Arabidopsis.  相似文献   

20.
NleG homologues constitute the largest family of type 3 effectors delivered by pathogenic E. coli, with fourteen members in the enterohaemorrhagic (EHEC) O157:H7 strain alone. Identified recently as part of the non-LEE-encoded (Nle) effector set, this family remained uncharacterised and shared no sequence homology to other proteins including those of known function. The C-terminal domain of NleG2-3 (residues 90 to 191) is the most conserved region in NleG proteins and was solved by NMR. Structural analysis of this structure revealed the presence of a RING finger/U-box motif. Functional assays demonstrated that NleG2-3 as well as NleG5-1, NleG6-2 and NleG9′ family members exhibited a strong autoubiquitination activity in vitro; a characteristic usually expressed by eukaryotic ubiquitin E3 ligases. When screened for activity against a panel of 30 human E2 enzymes, the NleG2-3 and NleG5-1 homologues showed an identical profile with only UBE2E2, UBE2E3 and UBE2D2 enzymes supporting NleG activity. Fluorescence polarization analysis yielded a binding affinity constant of 56±2 µM for the UBE2D2/NleG5-1 interaction, a value comparable with previous studies on E2/E3 affinities. The UBE2D2 interaction interface on NleG2-3 defined by NMR chemical shift perturbation and mutagenesis was shown to be generally similar to that characterised for human RING finger ubiquitin ligases. The alanine substitutions of UBE2D2 residues Arg5 and Lys63, critical for activation of eukaryotic E3 ligases, also significantly decreased both NleG binding and autoubiquitination activity. These results demonstrate that bacteria-encoded NleG effectors are E3 ubiquitin ligases analogous to RING finger and U-box enzymes in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号