首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

The Retinoblastoma protein (pRB) is a key tumor suppressor that is functionally inactivated in most cancers. pRB regulates the cell division cycle and cell cycle exit through protein–protein interactions mediated by its multiple binding interfaces. The LXCXE binding cleft region of pRB mediates interactions with cellular proteins that have chromatin regulatory functions. Chromatin regulation mediated by pRB is required for a stress responsive cell cycle arrest, including oncogene induced senescence. The in vivo role of chromatin regulation by pRB during senescence, and its relevance to cancer is not clear.

Methodology/Principal Findings

Using gene-targeted mice, uniquely defective for pRB mediated chromatin regulation, we investigated its role during transformation and tumor progression in response to activation of oncogenic ras. We report that the pRB∆L mutation confers susceptibility to escape from HrasV12 induced senescence and allows transformation in vitro, although these cells possess high levels of DNA damage. Intriguingly, LSL-Kras, Rb1 ∆L/∆L mice show delayed lung tumor formation compared to controls. This is likely due to the increased apoptosis seen in the early hyperplastic lesions shortly following ras activation that inhibits tumor progression. Furthermore, DMBA treatment to induce sporadic ras mutations in other tissues also failed to reveal greater susceptibility to cancer in Rb1 ∆L/∆L mice.

Conclusions/Significance

Our data suggests that chromatin regulation by pRB can function to limit proliferation, but its loss fails to contribute to cancer susceptibility in ras driven tumor models because of elevated levels of DNA damage and apoptosis.  相似文献   

3.

Background

The G1-S phase transition is critical to maintaining proliferative control and preventing carcinogenesis. The retinoblastoma tumor suppressor is a key regulator of this step in the cell cycle.

Results

Here we use a structure–function approach to evaluate the contributions of multiple protein interaction surfaces on pRB towards cell cycle regulation. SAOS2 cell cycle arrest assays showed that disruption of three separate binding surfaces were necessary to inhibit pRB-mediated cell cycle control. Surprisingly, mutation of some interaction surfaces had no effect on their own. Rather, they only contributed to cell cycle arrest in the absence of other pRB dependent arrest functions. Specifically, our data shows that pRB–E2F interactions are competitive with pRB–CDH1 interactions, implying that interchangeable growth arrest functions underlie pRB’s ability to block proliferation. Additionally, disruption of similar cell cycle control mechanisms in genetically modified mutant mice results in ectopic DNA synthesis in the liver.

Conclusions

Our work demonstrates that pRB utilizes a network of mechanisms to prevent cell cycle entry. This has important implications for the use of new CDK4/6 inhibitors that aim to activate this proliferative control network.
  相似文献   

4.

Background  

One of the major cellular serine/threonine protein phosphatases is protein phosphatase type 1 (PP1). Studies employing many eukaryotic systems all point to a crucial role for PP1 activity in controlling cell cycle progression. One physiological substrate for PP1 appears to be the product of the retinoblastoma susceptibility gene (pRB), a demonstrated tumor suppressor. The growth suppressive activity of pRB is regulated by its phosphorylation state. Of critical importance is the question of the in vivo effect of PP1 activity on pRB and growth regulation. As a first step towards addressing this question, we developed an inducible PP1 expression system to investigate the regulation of PP1 activity.  相似文献   

5.
6.
7.
8.
9.
10.
The retinoblastoma gene product (pRB) participates in the regulation of the cell division cycle through complex formation with numerous cellular regulatory proteins including the potentially oncogenic cyclin D1. Extending the current view of the emerging functional interplay between pRB and D-type cyclins, we now report that cyclin D1 expression is positively regulated by pRB. Cyclin D1 mRNA and protein is specifically downregulated in cells expressing SV40 large T antigen, adenovirus E1A, and papillomavirus E7/E6 oncogene products and this effect requires intact RB-binding, CR2 domain of E1A. Exceptionally low expression of cyclin D1 is also seen in genetically RB-deficient cell lines, in which ectopically expressed wild-type pRB results in specific induction of this G1 cyclin. At the functional level, antibody-mediated cyclin D1 knockout experiments demonstrate that the cyclin D1 protein, normally required for G1 progression, is dispensable for passage through the cell cycle in cell lines whose pRB is inactivated through complex formation with T antigen, E1A, or E7 oncoproteins as well as in cells which have suffered loss-of-function mutations of the RB gene. The requirement for cyclin D1 function is not regained upon experimental elevation of cyclin D1 expression in cells with mutant RB, while reintroduction of wild-type RB into RB-deficient cells leads to restoration of the cyclin D1 checkpoint. These results strongly suggest that pRB serves as a major target of cyclin D1 whose cell cycle regulatory function becomes dispensable in cells lacking functional RB. Based on available data including this study, we propose a model for an autoregulatory feedback loop mechanism that regulates both the expression of the cyclin D1 gene and the activity of pRB, thereby contributing to a G1 phase checkpoint control in cycling mammalian cells.  相似文献   

11.
Jin Y  Leung WK  Sung JJ  Wu JR 《Cell research》2005,15(9):695-703
The retinoblastoma (RB) tumor suppressor protein, pRB, plays an important role in the regulation of mammalian cell cycle. Furthermore, several lines of evidence suggest that pRB also involves in the regulation of apoptosis. In the present study, the degradation of pRB was observed in apoptotic gastric tumor cells treated with a new potent anti-tumor component, tripchlorolide (TC). The inhibition of pRB degradation by a general cysteine protease inhibitor IDAM resulted in the reduction of the apoptotic cells. Furthermore, the survival of the gastric tumor cells under the TC treatment was enhanced by an over-expression of exogenous pRB. These results suggest that the pRB degradation of the gastric tumor cells under the TC treatment involves in the apoptotic progression. In addition, the same extent of TCinduced pRB-degradation was detected in the gastric tumor cells containing a p53 dominant-negative construct, indicat- ing that this kind of pRB degradation is p53-independent.  相似文献   

12.
The retinoblastoma protein is phosphorylated on multiple sites by human cdc2.   总被引:46,自引:5,他引:46  
The retinoblastoma gene product (pRB) is a nuclear phosphoprotein that is thought to play a key role in the negative regulation of cellular proliferation. pRB is phosphorylated in a cell cycle dependent manner, and studies in both actively dividing and differentiated cells suggest that this modification may be essential for cells to progress through the cell cycle. Using tryptic phosphopeptide mapping we have shown that pRB is phosphorylated on multiple serine and threonine residues in vivo and that many of these phosphorylation events can be mimicked in vitro using purified p34cdc2. Using synthetic peptides corresponding to potential cdc2 phosphorylation sites, we have developed a strategy which has allowed the identification of five sites. S249, T252, T373, S807 and S811 are phosphorylated in vivo, and in each case these sites correspond closely to the consensus sequence for phosphorylation by p34cdc2. This and the observation that pRB forms a specific complex with p34cdc2 in vivo suggests that p34cdc2 or a p34cdc2-related protein is a major pRB kinase.  相似文献   

13.
14.
15.
16.
17.
18.
Retinoblastoma gene product (pRB) plays critical roles in regulation of the cell cycle and tumor suppression. It is known that downregulation of pRB can stimulate carcinogenesis via abrogation of the pRB pathway, although the mechanism has not been elucidated. In this study, we found that Mdm2, a ubiquitin ligase for p53, promoted ubiquitin-dependent degradation of pRB. pRB was efficiently ubiquitinated by wild-type Mdm2 in vivo as well as in vitro, but other RB family proteins were not. Mutant Mdm2 with a substitution in the RING finger domain showed dominant-negative stabilization of pRB. Both knockout and knockdown of Mdm2 caused accumulation of pRB. Moreover, Mdm2 inhibited pRB-mediated flat formation of Saos-2 cells. Downregulation of pRB expression was correlated with a high level of expression of Mdm2 in human lung cancers. These results suggest that Mdm2 regulates function of pRB via ubiquitin-dependent degradation of pRB.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号