首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques in AD, and its extracellular accumulation may be caused by an accelerated oxidation of glycated proteins. AGEs participate in neuronal death causing direct (chemical) and indirect (cellular) free radical production and consequently increase oxidative stress. The development of drugs for the treatment of AD that breaks the vicious cycles of oxidative stress and neurodegeneration offer new opportunities. These approaches include AGE-inhibitors, antioxidants and anti-inflammatory substances, which prevent free radical production.Key words: ageing, advanced glycation endproducts, Alzheimer disease, amyloid, oxidative stress  相似文献   

2.
Alzheimer's disease, the major dementing disorder of the elderly that affects over 4 million Americans, is related to amyloid beta-peptide, the principal component of senile plaques in Alzheimer's disease brain. Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of Alzheimer's disease brain. Our laboratory united these two observations in a model to account for neurodegeneration in Alzheimer's disease brain, the amyloid beta-peptide-associated oxidative stress model for neurotoxicity in Alzheimer's disease. Under this model, the aggregated peptide, perhaps in concert with bound redox metal ions, initiates free radical processes resulting in protein oxidation, lipid peroxidation, reactive oxygen species formation, cellular dysfunction leading to calcium ion accumulation, and subsequent neuronal death. Free radical antioxidants abrogate these findings. This review outlines the substantial evidence from multiidisciplinary approaches for amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers. In addition, we review the strong evidence supporting the notion that the single methionine residue of amyloid beta-peptide is vital to the oxidative stress and neurotoxicological properties of this peptide. Further, we discuss studies that support the hypothesis that aggregated soluble amyloid beta-peptide and not fibrils per se are necessary for oxidative stress and neurotoxicity associated with amyloid beta-peptide.  相似文献   

3.
Alzheimer's disease, the major dementing disorder of the elderly that affects over 4 million Americans, is related to amyloid β-peptide, the principal component of senile plaques in Alzheimer's disease brain. Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of Alzheimer's disease brain. Our laboratory united these two observations in a model to account for neurodegeneration in Alzheimer's disease brain, the amyloid β-peptide-associated oxidative stress model for neurotoxicity in Alzheimer's disease. Under this model, the aggregated peptide, perhaps in concert with bound redox metal ions, initiates free radical processes resulting in protein oxidation, lipid peroxidation, reactive oxygen species formation, cellular dysfunction leading to calcium ion accumulation, and subsequent neuronal death. Free radical antioxidants abrogate these findings. This review outlines the substantial evidence from multiidisciplinary approaches for amyloid β-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers. In addition, we review the strong evidence supporting the notion that the single methionine residue of amyloid β-peptide is vital to the oxidative stress and neurotoxicological properties of this peptide. Further, we discuss studies that support the hypothesis that aggregated soluble amyloid β-peptide and not fibrils per se are necessary for oxidative stress and neurotoxicity associated with amyloid β-peptide.  相似文献   

4.
Metals, oxidative stress and neurodegenerative disorders   总被引:1,自引:0,他引:1  
The neurodegenerative diseases, Alzheimer’s disease (AD) and Parkinson’s disease (PD), are age-related disorders characterized by the deposition of abnormal forms of specific proteins in the brain. AD is characterized by the presence of extracellular amyloid plaques and intraneuronal neurofibrillary tangles in the brain. Biochemical analysis of amyloid plaques revealed that the main constituent is fibrillar aggregates of a 39–42 residue peptide referred to as the amyloid-β protein (Aβ). PD is associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. One of the pathological hallmarks of PD is the presence of intracellular inclusions called Lewy bodies that consist of aggregates of the presynaptic soluble protein called α-synuclein. There are various factors influencing the pathological depositions, and in general, the cause of neuronal death in neurological disorders appears to be multifactorial. However, it is clear, that the underlying factor in the neurological disorders is increased oxidative stress substantiated by the findings that the protein side-chains are modified either directly by reactive oxygen species (ROS) or reactive nitrogen species (RNS), or indirectly, by the products of lipid peroxidation. The increased level of oxidative stress in AD brain is reflected by the increased brain content of iron (Fe) and copper (Cu) both capable of stimulating free radical formation (e.g. hydroxyl radicals via Fenton reaction), increased protein and DNA oxidation in the AD brain, enhanced lipid peroxidation, decreased level of cytochrome c oxidase and advanced glycation end products (AGEs), carbonyls, malondialdehyde (MDA), peroxynitrite, and heme oxygenase-1 (HO-1). AGEs, mainly through their interaction with receptors for advanced glycation end products (RAGEs), further activate signaling pathways, inducing formation of proinflammatory cytokines such as interleukin-6 (IL-6). The conjugated aromatic ring of tyrosine residues is a target for free-radical attack, and accumulation of dityrosine and 3-nitrotyrosine has also been reported in AD brain. The oxidative stress linked with PD is supported by both postmortem studies and by studies showing the increased level of oxidative stress in the substantia nigra pars compacta, demonstrating thus the capacity of oxidative stress to induce nigral cell degeneration. Markers of lipid peroxidation include 4-hydroxy-trans-2-nonenal (HNE), 4-oxo-trans-2-nonenal (4-ONE), acrolein, and 4-oxo-trans-2-hexenal, all of which are well recognized neurotoxic agents. In addition, other important factors, involving inflammation, toxic action of nitric oxide (NO·), defects in protein clearance, and mitochondrial dysfunction all contribute to the etiology of PD. It has been suggested that several individual antioxidants or their combinations can be neuroprotective and decrease the risk of AD or slow its progression. The aim of this review is to discuss the role of redox metals Fe and Cu and non-redox metal zinc (Zn) in oxidative stress-related etiology of AD and PD. Attention is focused on the metal-induced formation of free radicals and the protective role of antioxidants [glutathione (GSH), vitamin C (ascorbic acid)], vitamin E (α-Tocopherol), lipoic acid, flavonoids [catechins, epigallocatechin gallate (EGCG)], and curcumin. An alternate hypothesis topic in AD is also discussed.  相似文献   

5.
Alzheimer's disease (AD) a progressive neurodegenerative disorder of later life, is characterized by brain deposition of amyloid β-protein (Aβ) plaques, accumulation of intracellular neurofibrillatory tangles, synaptic loss and neuronal cell death. There is significant evidence that oxidative stress is a critical event in the pathogenesis of AD.  相似文献   

6.
Butterfield DA  Kanski J 《Peptides》2002,23(7):1299-1309
Amyloid beta-peptide 1-42 [Abeta(1-42)] is central to the pathogenesis of Alzheimer's disease (AD), and the AD brain is under intense oxidative stress. Our laboratory combined these two aspects of AD into the Abeta-associated free radical oxidative stress model for neurodegeneration in AD brain. Abeta(1-42) caused protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems, all of which could be inhibited by free radical antioxidants. Recent studies have been directed at discerning molecular mechanisms by which Abeta(1-42)-associated free radical oxidative stress and neurotoxicity arise. The single methionine located in residue 35 of Abeta(1-42) is critical for these properties. This review presents the evidence supporting the role of methionine in Abeta(1-42)-associated free radical oxidative stress and neurotoxicity. This work is of obvious relevance to AD and provides a coupling between the centrality of Abeta(1-42) in the pathogenesis of AD and the oxidative stress under which the AD brain exists.  相似文献   

7.
Amyloid precursor protein (APP) has been modified by β and γ-secretase that cause amyloid deposits (plaques) in neuronal cells. Glyceraldhyde-derived AGEs has been identified as a major source of neurotoxicity in Alzheimer’s disease (AD). In a previous study, we demonstrated that glyceraldehyde-derived AGEs increase APP and Aβ via ROS. Furthermore, the combination of AGEs and Aβ has been shown to enhance neurotoxicity. In mice, APP expression is increased by tail vein injection of AGEs. This evidence suggests a correlation between AGEs and the development of AD. However, the role played by AGEs in the pathogenesis of AD remains unclear. In this report, we demonstrate that AGEs up-regulate APP processing protein (BACE and PS1) and Sirt1 expression via ROS, but do not affect the expression of downstream antioxidant genes HO-1 and NQO-1. Moreover, we found that AGEs increase GRP78 expression and enhance the cell death-related pathway p53, bcl-2/bax ratio, caspase 3. These results indicate that AGEs impair the neuroprotective effects of Sirt1 and lead to neuronal cell death via ER stress. Our findings suggest that AGEs increase ROS production, which stimulates downstream pathways related to APP processing, Aβ production, Sirt1, and GRP78, resulting in the up-regulation of cell death related pathway. This in-turn enhances neuronal cell death, which leads to the development of AD.  相似文献   

8.
Alzheimer's disease (AD) is a multifactorial disorder characterized by the presence of amyloid plaques and neurofibrillary tangles (NFTs). Rare early-onset forms of AD are associated with autosomal dominant mutations in the amyloid precursor protein gene, presenilin 1 gene, or presenilin 2 gene. The late-onset form of the disease (LOAD) is the most common form. The causes of LOAD are not yet clarified, but several environmental and genetic risk factors have been identified. Numerous studies have highlighted a role for free radical-mediated injury to brain regions of this illness. In addition, studies from mild cognitive impairment patients suggest that oxidative stress is an early event in the pathogenesis of AD. The associations between these markers of free radical damage and the pathogenic cascades involved in AD are complex. Over the past 2 decades, a number of mouse models have been created to recapitulate the major neuropathological hallmarks of AD, namely amyloid plaques and NFTs. These mice recapitulate many, although not all, of the key features of AD. Some strains of transgenic mice develop amyloid plaques, some accumulate NFTs, and some do both. Here we review the evidence for increased free radical-mediated damage to the brain with particular attention to the stage of the disease in various transgenic models of AD related to the amyloid-β cascade.  相似文献   

9.
Abstract: Large numbers of neuritic plaques surrounded by reactive astrocytes are characteristic of Alzheimer's disease (AD). There is a large body of research supporting a causal role for the amyloid β peptide (Aβ), a main constituent of these plaques, in the neuropathology of AD. Several hypotheses have been proposed to explain the toxicity of Aβ including free radical injury and excitotoxicity. It has been reported that treatment of neuronal/astrocytic cultures with Aβ increases the vulnerability of neurons to glutamate-induced cell death. One mechanism that may explain this finding is inhibition of the astrocyte glutamate transporter by Aβ. The aim of the current study was to determine if Aβs inhibit astrocyte glutamate uptake and if this inhibition involves free radical damage to the transporter/astrocytes. We have previously reported that Aβ can generate free radicals, and this radical production was correlated with the oxidation of neurons in culture and inhibition of astrocyte glutamate uptake. In the present study, Aβ (25–35) significantly inhibited l -glutamate uptake in rat hippocampal astrocyte cultures and this inhibition was prevented by the antioxidant Trolox. Decreases in astrocyte function, in particular l -glutamate uptake, may contribute to neuronal degeneration such as that seen in AD. These results lead to a revised excitotoxicity/free radical hypothesis of Aβ toxicity involving astrocytes.  相似文献   

10.
Amyloid beta-peptide (A(beta)) is heavily deposited in the brains of Alzheimer's disease (AD) patients, and free radical oxidative stress, particularly of neuronal lipids and proteins, is extensive. Recent research suggests that these two observations may be linked by A(beta)-induced oxidative stress in AD brain. This review summarizes current knowledge on phospholipid peroxidation and protein oxidation in AD brain, one potential cause of this oxidative stress, and consequences of A(beta)-induced lipid peroxidation and protein oxidation in AD brain.  相似文献   

11.
Alzheimer's disease (AD) is neuropathologically characterized by depositions of extracellular amyloid and intracellular neurofibrillary tangles, associated with loss of neurons in the brain. Amyloid beta-peptide (Abeta) is the major component of senile plaques and is considered to have a causal role in the development and progress of AD. Several lines of evidence suggest that enhanced oxidative stress and inflammation play important roles in the pathogenesis or progression of AD. The present study aimed to investigate the protective effects of ethyl-4-hydroxy-3-methoxycinnamic acid (FAEE), a phenolic compound which shows antioxidant and anti-inflammatory activity, on Abeta(1-42)-induced oxidative stress and neurotoxicity. We hypothesized that the structure of FAEE would facilitate radical scavenging and may induce protective proteins. Abeta(1-42) decreases cell viability, which was correlated with increased free radical formation, protein oxidation (protein carbonyl, 3-nitrotyrosine), lipid peroxidation (4-hydroxy-2-trans-nonenal) and inducible nitric oxide synthase. Pre-treatment of primary hippocampal cultures with FAEE significantly attenuated Abeta(1-42)-induced cytotoxicity, intracellular reactive oxygen species accumulation, protein oxidation, lipid peroxidation and induction of inducible nitric oxide synthase. Treatment of neurons with Abeta(1-42) increases levels of heme oxygenase-1 and heat shock protein 72. Consistent with a cellular stress response to the Abeta(1-42)-induced oxidative stress, FAEE treatment increases the levels of heme oxygenase-1 and heat shock protein 72, which may be regulated by oxidative stresses in a coordinated manner and play a pivotal role in the cytoprotection of neuronal cells against Abeta(1-42)-induced toxicity. These results suggest that FAEE exerts protective effects against Abeta(1-42) toxicity by modulating oxidative stress directly and by inducing protective genes. These findings suggest that FAEE could potentially be of importance for the treatment of AD and other oxidative stress-related diseases.  相似文献   

12.
Multiple lines of evidence demonstrated that increased brain oxidative stress is a key feature of Alzheimer's disease (AD). Melatonin is a potent endogenous antioxidant and free radical scavenger. A transgenic mouse model for AD mimics the accumulation of senile plaques, neuronal loss, and memory impairment. Four-month-old transgenic mice were administrated melatonin at 10 mg/kg for 4 months. We investigated the long-term influence of melatonin on these mice before amyloid plaques were deposited. We found an increase in the levels of brain thiobarbituric acid-reactive substances (TBARS) and a decrease in glutathione (GSH) content, as well as accelerated upregulation of the apoptotic-related factors, such as Bax, caspase-3, and prostate apoptosis response-4 (Par-4) in transgenic mice, but not in wild-type (WT) littermates. Significantly, the increase in TBARS levels, reduction in superoxide dismutase activity, and GSH content were reinstated by melatonin. In addition, transgenic mice administered melatonin (10 mg/kg) showed a significant reduction in upregulated expression of Bax, caspase-3 and Par-4, indicating inhibited triggering of neuronal apoptosis. These results supported the hypothesis that oxidative stress was an early event in AD pathogenesis and that antioxidant therapy may be beneficial only if given at this stage of the disease process. In sharp contrast to conventional antioxidants, melatonin crosses the blood-brain barrier, is relatively devoid of toxicity, and constitutes a potential therapeutic candidate in AD treatment.  相似文献   

13.
Presenilin-1 (PS-1) is a transmembrane protein that may be involved in the processing of amyloid precursor protein (APP). Mutations in PS-1 are the major cause of familial Alzheimer's disease (AD). AD brain is under significant oxidative stress, including protein oxidation. In the present study, protein oxidation was compared in synaptosomes from knock-in mice expressing mutant human PS-1 (M146V mutation) and from wild-type mice expressing non-mutant human PS-1. Synaptosomal membrane protein conformational alterations associated with oxidative stress were measured using electron paramagnetic resonance (EPR) in conjunction with a protein-specific spin-label. Direct synaptosomal protein oxidation was assessed by a carbonyl detection assay. Synaptosomal proteins from PS-1 mutant mice displayed increased oxidative stress as measured by both techniques, compared with synaptosomal proteins from wild type mice. These data suggest that PS-1 mutations cause oxidative alterations in synaptosomal membrane protein structure and oxidative modification of synaptosomal proteins. Our findings suggest that familial AD may be associated with oxidative stress that may play a pivotal role in neuronal dysfunction and death.  相似文献   

14.
Age-associated neurodegenerative disorders are becoming more prevalent as the mean age of the population increases in the United States over the next few decades. Both normal brain aging and Alzheimer's disease (AD) are associated with oxidative stress. Our laboratory has used a wide variety of physical and biochemical methods to investigate free radical oxidative stress in several models of aging and AD. Beta-amyloid (A beta), the peptide that constitutes the central core of senile plaques in AD brain, is associated with free radical oxidative stress and is toxic to neurons. This review summarizes some of our studies in aging and A beta-associated free radical oxidative stress and on the modulating effects of free radical scavengers on neocortical synaptosomal membrane damage found in aging and A beta-treated systems.  相似文献   

15.
Oxidative stress is observed in Alzheimer's disease (AD) brain, including protein oxidation and lipid peroxidation. One of the major pathological hallmarks of AD is the brain deposition of amyloid beta-peptide (Abeta). This 42-mer peptide is derived from the beta-amyloid precursor protein (APP) and is associated with oxidative stress in vitro and in vivo. Mutations in the PS-1 and APP genes, which increase production of the highly amyloidogenic amyloid beta-peptide (Abeta42), are the major causes of early onset familial AD. Several lines of evidence suggest that enhanced oxidative stress, inflammation, and apoptosis play important roles in the pathogenesis of AD. In the present study, primary neuronal cultures from knock-in mice expressing mutant human PS-1 and APP were compared with those from wild-type mice, in the presence or absence of various oxidizing agents, viz, Abeta(1-42), H2O2 and kainic acid (KA). APP/PS-1 double mutant neurons displayed a significant basal increase in oxidative stress as measured by protein oxidation, lipid peroxidation, and 3-nitrotyrosine when compared with the wild-type neurons (p < 0.0005). Elevated levels of human APP, PS-1 and Abeta(1-42) were found in APP/PS-1 cultures compared with wild-type neurons. APP/PS-1 double mutant neuron cultures exhibited increased vulnerability to oxidative stress, mitochondrial dysfunction and apoptosis induced by Abeta(1-42), H2O2 and KA compared with wild-type neuronal cultures. The results are consonant with the hypothesis that Abeta(1-42)-associated oxidative stress and increased vulnerability to oxidative stress may contribute significantly to neuronal apoptosis and death in familial early onset AD.  相似文献   

16.
The brains of Alzheimer's disease (AD) patients are characterized by large deposits of amyloid beta peptide (Abeta). Abeta is known to increase free radical production in nerve cells, leading to cell death that is characterized by lipid peroxidation, free radical formation, protein oxi-dation, and DNA/RNA oxidation. In this study, we selected an extract of Gardenia jasminoides by screening, and investigated its ameliorating effects on Abeta-induced oxidative stress using PC12 cells. The effects of the extract were evaluated using the 2,7 -dichlorofluorescein diacetate (DCF-DA) assay and the 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. To find the active component, the ethanol extract was partitioned with hexane, chloroform, and ethyl acetate, respectively, and the active component was purified by silica-gel column chromatography and HPLC. The results suggested that Gardenia jasminoides extract can reduce the cytotoxicity of Abeta in PC 12 cells, possibly by reducing oxidative stress.  相似文献   

17.
Increased expression and altered processing of the amyloid precursor protein (APP) and generation of beta-amyloid peptides is important in the pathogenesis of amyloid plaques in Alzheimer's disease (AD). Transgenic Tg2576 mice overexpressing the Swedish mutation of human APP exhibit beta-amyloid deposition in the neocortex and limbic areas, accompanied by gliosis and dystrophic neurites. However, murine plaques appear to be less cross-linked and the mice show a lower degree of inflammation and neurodegeneration than AD patients. 'Advanced glycation endproducts (AGEs)', formed by reaction of proteins with reactive sugars or dicarbonyl compounds, are able to cross-link proteins and to activate glial cells, and are thus contributing to plaque stability and plaque-induced inflammation in AD. In this study, we analyze the tissue distribution of AGEs and the pro-inflammatory cytokines IL-1beta and TNF-alpha in 24-month-old Tg2576 mice, and compare the AGE distribution in these mice with a younger age group (13 months old) and a typical Alzheimer's disease patient. Around 70% of the amyloid plaque cores in the 24-month-old mice are devoid of AGEs, which might explain their solubility in physiological buffers. Plaque associated glia, which express IL-1beta and TNF-alpha, contain a significant amount of AGEs, suggesting that plaques, i.e. Abeta as its major component, can induce intracellular AGE formation and the expression of the cytokines on its own. In the 13-month-old transgenic mice, AGEs staining can neither be detected in plaques nor in glial cells. In contrast, AGEs are present in high amounts in both plaques and glia in the human AD patient. The data obtained in this show interesting differences between the transgenic mouse model and AD patients, which should be considered using the transgenic approach to test therapeutical strategies to eliminate plaques or to attenuate the inflammatory response in AD.  相似文献   

18.
Abstract

The details of the sequence of pathological events leading to neuron death in Alzheimer’s disease (AD) are not known. Even the formation of amyloid plaques, one of the major histopathological hallmarks of AD, is not clearly understood; both the origin of the amyloid and the means of its deposition remain unclear. It is still widely considered, however, that amyloid plaques undergo gradual growth in the interstitial space of the brain via continual extracellular deposition of amyloid beta peptides at “seeding sites,” and that these growing plaques encroach progressively on neurons and their axons and dendritic processes, eventually leading to neuronal death. Actually, histopathological evidence to support this mechanism is sparse and of uncertain validity. The fact that the amyloid deposits in AD brains that are collectively referred to as plaques are of multiple types and that each seems to have a different origin often is overlooked. We have shown experimentally that many of the so-called “diffuse amyloid plaques,” which lack associated inflammatory cells, are either the result of leaks of amyloid from blood vessels at focal sites of blood-brain barrier breaches or are artifacts resulting from grazing sections through the margins of dense core plaques. In addition, we have provided experimental evidence that neuronal death via necrosis leaves a residue that takes the form of a spheroid “cloud” of amyloid, released by cell lysis, surrounding a dense core that often contains neuronal nuclear material. Support for a neuronal origin for these “dense core amyloid plaques” includes their ability to attract inflammatory cells (microglia and immigrant macrophages) and that they contain nuclear and cytoplasmic components that are somewhat resistant to proteolysis by lysosomes released during neuronal cell lysis. We discuss here the clinical and therapeutic importance of recognizing that amyloid deposition occurs both within neurons (intracellular) and in the interstitial (extracellular) space of the brain. For dense core plaques, we propose that the latter location largely follows from the former. This scenario suggests that blocking intraneuronal amyloid deposition should be a primary therapeutic target. This strategy also would be effective for blocking the gradual compromise of neuronal function resulting from this intraneuronal deposition, and the eventual death and lysis of these amyloid-burdened neurons that leads to amyloid release and the appearance of dense core amyloid plaques in the interstitium of AD brains.  相似文献   

19.
In its sporadic form Alzheimer's disease (AD) results from a combination of genetic and environmental risk factors with abnormal oxidative reactions, which result in free radical mediated injury of the brain. Isoprostanes are oxidized lipids formed by a free radical mediated mechanism, which in recent years have emerged as a reliable and sensitive marker of lipid peroxidation and oxidative stress. Consistent data show that they are increased in the brain of human AD as well as AD animal models. Besides their role as biomarkers, isoprostanes possess important biological effects, functioning as mediators of the cellular response to oxidative stress within the CNS. Recent evidence indicates that these lipid oxidation products, by activating the thromboxane receptor system, mediate the pro-amyloidotic neuronal response to oxidative stress in an experimental model of AD. This novel observation has important clinical implication, since pharmacologic modulation of the TP receptor system by selective antagonists, some of which are already available, could represent a novel therapeutic opportunity for AD as disease-modifying agents.  相似文献   

20.
Zinc and disease of the brain   总被引:11,自引:0,他引:11  
Zinc is one of the most abundant transition metals in the brain. A substantial fraction (10-15%) of brain zinc is located inside presynaptic vesicles of certain glutamatergic terminals in a free or loosely bound state. This vesicle zinc is released with neuronal activity or depolarization, probably serving physiologic functions. However, with excess release, as may occur in a variety of pathologic conditions, zinc may translocate to and accumulate in postsynaptic neurons, events which may contribute to selective neuronal cell death. Intracellular mechanisms of zinc neurotoxicity may include disturbances in energy metabolism, increases in oxidative stress, and activation of apoptosis cascades. Zinc inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and depletes nicotinamide adenine dinucleotide (NAD(+)) and adenosine triphosphate (ATP). On the other hand, zinc activates protein kinase C (PKC) and extracellular signal-regulated kinase (Erk-1/2), and induces NADPH oxidase; these events result in oxidative neuronal injury. Zinc can also trigger caspase activation and apoptosis via the p75(NTR) pathway. Interestingly, the converse-depletion of intracellular zinc-also induces neuronal death, but in this case, exclusively via classical apoptosis. In addition to the neurotoxic effect, zinc may contribute to the pathogenesis of chronic neurodegenerative disease. For example, in Alzheimer's disease (AD), mature amyloid plaques, but not preamyloid deposits, are found to contain high levels of zinc, suggesting the role of zinc in the process of plaque maturation. Further insights into roles of zinc in brain diseases may help set a new direction toward the development of effective treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号