首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerous structurally and functionally unrelated drugs block the hERG potassium channel. HERG channels are involved in cardiac action potential repolarization, and reduced function of hERG lengthens ventricular action potentials, prolongs the QT interval in an electrocardiogram, and increases the risk for potentially fatal ventricular arrhythmias. In order to reduce the risk of investing resources in a drug candidate that fails preclinical safety studies because of QT prolongation, it is important to screen compounds for activity on hERG channels early in the lead optimization process. A number of hERG assays are available, ranging from high throughput binding assays on stably expressed recombinant channels to very time consuming electrophysiological examinations in cardiac myocytes. Depending on the number of compounds to be tested, binding assays or functional assays measuring membrane potential or Rb(+) flux, combined with electrophysiology on a few compounds, can be used to efficiently develop the structure-function relationship of hERG interactions.  相似文献   

2.
The cardiac action potential is the result of an orchestrated function of a number of different ion channels. Action potential repolarisation in humans relies on three potassium current components named IKr, IKs and IK1 with party overlapping functions. The ion channel α-subunits conducting these currents are hERG1 (Kv11.1), KCNQ1 (Kv7.1) and Kir2.1. Loss-of-function in any of these currents can result in long QT syndrome. Long QT is a pro-arrhythmic disease with increased risk of developing lethal ventricular arrhythmias such as Torsade de Pointes and ventricular fibrillation. In addition to congenital long QT, acquired long QT can also constitute a safety risk. Especially unintended inhibition of the hERG1 channel constitutes a major concern in the development of new drugs. Based on this knowledge is has been speculated whether activation of the hERG1 channel could be anti-arrhythmic and thereby constitute a new principle in treatment of cardiac arrhythmogenic disorders. The first hERG1 channel agonist was reported in 2005 and a limited number of such compounds are now available. In the present text we review results obtained by hERG1 channel activation in a number of cardiac relevant settings from in vitro to in vivo. It is demonstrated how the principle of hERG1 channel activation under certain circumstances can constitute a new anti-arrhythmogenic principle. Finally, important conceptual differences between the short QT syndrome and the hERG1 channel activation, are evaluated.  相似文献   

3.
Several commercially available pharmaceutical compounds have been shown to block the IKr current of the cardiac action potential. This effect can cause a prolongation of the electrocardiogram QT interval and a delay in ventricular repolarization. The Food and Drug Administration recommends that all new potential drug candidates be assessed for IKr block to avoid a potentially lethal cardiac arrhythmia known as torsades de pointes. Direct compound interaction with the human ether-a-go-go- related gene (hERG) product, a delayed rectifier potassium channel, has been identified as a molecular mechanism of IKr block. One strategy to identify compounds with hERG liability is to monitor hERG current inhibition using electrophysiology techniques. The authors describe the Ion Works HT instrument as a tool for screening cell lines expressing hERG channels. Based on current amplitude and stability criteria, a cell line was selected and used to perform a 300-compound screen. The screen was able to identify compounds with hERG activity within projects that spanned different therapeutic areas. The cell line selection and optimization, as well as the screening abilities of the Ion Works HT system, provide a powerful means of assessing hERGactive compounds early in the drug discovery pipeline.  相似文献   

4.
Human Ether-à-go-go (hERG) channels contribute to cardiac repolarization, and inherited variants or drug block are associated with long QT syndrome type 2 (LQTS2) and arrhythmia. Therefore, hERG activator compounds present a therapeutic opportunity for targeted treatment of LQTS. However, a limiting concern is over-activation of hERG resurgent current during the action potential and abbreviated repolarization. Activators that slow deactivation gating (type I), such as RPR260243, may enhance repolarizing hERG current during the refractory period, thus ameliorating arrhythmogenicity with reduced early repolarization risk. Here, we show that, at physiological temperature, RPR260243 enhances hERG channel repolarizing currents conducted in the refractory period in response to premature depolarizations. This occurs with little effect on the resurgent hERG current during the action potential. The effects of RPR260243 were particularly evident in LQTS2-associated R56Q mutant channels, whereby RPR260243 restored WT-like repolarizing drive in the early refractory period and diastolic interval, combating attenuated protective currents. In silico kinetic modeling of channel gating predicted little effect of the R56Q mutation on hERG current conducted during the action potential and a reduced repolarizing protection against afterdepolarizations in the refractory period and diastolic interval, particularly at higher pacing rates. These simulations predicted partial rescue from the arrhythmic effects of R56Q by RPR260243 without risk of early repolarization. Our findings demonstrate that the pathogenicity of some hERG variants may result from reduced repolarizing protection during the refractory period and diastolic interval with limited effect on action potential duration, and that the hERG channel activator RPR260243 may provide targeted antiarrhythmic potential in these cases.  相似文献   

5.
One of the main culprits in modern drug discovery is apparent cardiotoxicity of many lead-candidates via inadvertent pharmacologic blockade of K+, Ca2+ and Na+ currents. Many drugs inadvertently block hERG1 leading to an acquired form of the Long QT syndrome and potentially lethal polymorphic ventricular tachycardia. An emerging strategy is to rely on interventions with a drug that may proactively activate hERG1 channels reducing cardiovascular risks. Small molecules-activators have a great potential for co-therapies where the risk of hERG-related QT prolongation is significant and rehabilitation of the drug is impractical. Although a number of hERG1 activators have been identified in the last decade, their binding sites, functional moieties responsible for channel activation and thus mechanism of action, have yet to be established. Here, we present a proof-of-principle study that combines de-novo drug design, molecular modeling, chemical synthesis with whole cell electrophysiology and Action Potential (AP) recordings in fetal mouse ventricular myocytes to establish basic chemical principles required for efficient activator of hERG1 channel. In order to minimize the likelihood that these molecules would also block the hERG1 channel they were computationally engineered to minimize interactions with known intra-cavitary drug binding sites. The combination of experimental and theoretical studies led to identification of functional elements (functional groups, flexibility) underlying efficiency of hERG1 activators targeting binding pocket located in the S4–S5 linker, as well as identified potential side-effects in this promising line of drugs, which was associated with multi-channel targeting of the developed drugs.  相似文献   

6.
The phenothiazine antipsychotic agent thioridazine has been linked with prolongation of the QT interval on the electrocardiogram, ventricular arrhythmias, and sudden death. Although thioridazine is known to inhibit cardiac hERG K(+) channels there is little mechanistic information on this action. We have investigated in detail hERG K(+) channel current (I(hERG)) blockade by thioridazine and identified a key molecular determinant of blockade. Whole-cell I(hERG) measurements were made at 37 degrees C from human embryonic kidney (HEK-293) cells expressing wild-type and mutant hERG channels. Thioridazine inhibited I(hERG) tails at -40mV following a 2s depolarization to +20mV with an IC(50) value of 80nM. Comparable levels of I(hERG) inhibition were seen with physiological command waveforms (ventricular and Purkinje fibre action potentials). Thioridazine block of I(hERG) was only weakly voltage-dependent, though the time dependence of I(hERG) inhibition indicated contingency of blockade upon channel gating. The S6 helix point mutation F656A almost completely abolished, and the Y652A mutation partially attenuated, I(hERG) inhibition by thioridazine. In summary, thioridazine is one of the most potent hERG K(+) channel blockers amongst antipsychotics, exhibiting characteristics of a preferential open/activated channel blocker and binding at a high affinity site in the hERG channel pore.  相似文献   

7.
The human Ether-a-go-go Related Gene (hERG) potassium channel plays a central role in regulating cardiac excitability and maintenance of normal cardiac rhythm. Mutations in hERG cause a third of all cases of congenital long QT syndrome, a disorder of cardiac repolarisation characterised by prolongation of the QT interval on the surface electrocardiogram, abnormal T waves, and a risk of sudden cardiac death due to ventricular arrhythmias. Additionally, the hERG channel protein is the molecular target for almost all drugs that cause the acquired form of long QT syndrome. Advances in understanding the structural basis of hERG gating, its traffic to the cell surface, and the molecular architecture involved in drug-block of hERG, are providing the foundation for rational treatment and prevention of hERG associated long QT syndrome. This review summarises the current knowledge of hERG function and dysfunction, and the areas of ongoing research.  相似文献   

8.
A major physiological role of hERG1 (human Ether-á-go-go-Related Gene 1) potassium channels is to repolarize cardiac action potentials. Two isoforms, hERG1a and hERG1b, associate to form the potassium current IKr in cardiomyocytes. Inherited mutations in hERG1a or hERG1b cause prolonged cardiac repolarization, long QT syndrome, and sudden death arrhythmia. hERG1a subunits assemble with and enhance the number of hERG1b subunits at the plasma membrane, but the mechanism for the increase in hERG1b by hERG1a is not well understood. Here, we report that the hERG1a N-terminal region expressed in trans with hERG1b markedly increased hERG1b currents and increased biotin-labeled hERG1b protein at the membrane surface. hERG1b channels with a deletion of the N-terminal 1b domain did not have a measurable increase in current or biotinylated protein when coexpressed with hERG1a N-terminal regions, indicating that the 1b domain was required for the increase in hERG1b. Using a biochemical pull-down interaction assay and a FRET hybridization experiment, we detected a direct interaction between the hERG1a N-terminal region and the hERG1b N-terminal region. Using engineered deletions and alanine mutagenesis, we identified a short span of amino acids at positions 216 to 220 within the hERG1a “N-linker” region that were necessary for the upregulation of hERG1b. We propose that direct structural interactions between the hERG1a N-linker region and the hERG1b 1b domain increase hERG1b at the plasma membrane. Mechanisms regulating hERG1a and hERG1b are likely critical for cardiac function, may be disrupted by long QT syndrome mutants, and serve as potential targets for therapeutics.  相似文献   

9.
The number of projects in drug development that fail in late phases because of cardiac side effects such as QT prolongation can impede drug discovery and development of projects. The molecular target responsible for QT prolongation by a wide range of pharmaceutical agents is the myocardial hERG potassium channel. It is therefore desirable to screen for compound interactions with the hERG channel at an early stage of drug development. Here, the authors report a cell-based fluorescence assay using membrane potential-sensitive fluorescent dyes and stably transfected hERG channels from CHO cells. The assay allows semiautomated screening of compounds for hERG activity on 384-well plates and is sufficiently rapid for testing a large number of compounds. The assay is robust as indicated by a Z' factor larger than 0.6. The throughput is in the range of 10,000 data points per day, which is significantly higher than any other method presently available for hERG. The data obtained with the fluorescence assay were in qualitative agreement with those from patch-clamp electrophysiological analysis. There were no false-positive hits, and the rate of false-negative compounds is currently 12% but might be further reduced by testing compounds at higher concentration. Quantitative differences between fluorescence and electrophysiological methods may be due to the use- or voltage-dependent activity of the antagonists.  相似文献   

10.
Human ether-a-go-go-related gene (hERG) channels play a critical role in cardiac action potential repolarization. The unintended block of hERG channels by compounds can prolong the cardiac action potential duration and induce arrhythmia. Several compounds not only block hERG channels but also enhance channel activation after the application of a depolarizing voltage step. This is referred to as facilitation. In this study, we tried to extract the property of compounds that induce hERG channel facilitation. We first examined the facilitation effects of structurally diverse hERG channel blockers in Xenopus oocytes. Ten of 13 assayed compounds allowed facilitation, suggesting that it is an effect common to most hERG channel blockers. We constructed a pharmacophore model for hERG channel facilitation. The model consisted of one positively ionizable feature and three hydrophobic features. Verification experiments suggest that the model well describes the structure-activity relationship for facilitation. Comparison of the pharmacophore for facilitation with that for hERG channel block showed that the spatial arrangement of features is clearly different. It is therefore conceivable that two different interactions of a compound with hERG channels exert two pharmacological effects, block and facilitation.  相似文献   

11.
In the late 1980’s reports linking the non-sedating antihistamines terfenadine and astemizole with torsades de pointes, a form of ventricular tachyarrhythmia that can degenerate into ventricular fibrillation and sudden death, appeared in the clinical literature. A substantial body of evidence demonstrates that the arrhythmogenic effect of these cardiotoxic antihistamines, as well as a number of structurally related compounds, results from prolongation of the QT interval due to suppression of specific delayed rectifier ventricular K+ currents via blockade of the hERG-IKr channel. In order to better understand the structural requirements for hERG and H1 binding for terfenadine, a series of analogs of terfenadine has been prepared and studied in both in vitro and in vivo hERG and H1 assays.  相似文献   

12.
PC-1 (NPP-1) inhibitors may be useful as therapeutics for the treatment of CDDP (calcium pyrophosphate dehydrate) deposition disease and osteoarthritis. We have identified a series of potent quinazolin-4-piperidin-4-ethyl sulfamide PC-1 inhibitors. The series, however, suffers from high affinity binding to hERG potassium channels, which can cause drug-induced QT prolongation. We used a hERG homology model to identify potential key interactions between our compounds and hERG, and the information gained was used to design and prepare a series of quinazolin-4-piperidin-4-methyl sulfamides that retain PC-1 activity but lack binding affinity for hERG.  相似文献   

13.
14.
Drug-mediated or medical condition-mediated disruption of hERG function accounts for the main cause of acquired long-QT syndrome (acLQTs), which predisposes affected individuals to ventricular arrhythmias (VA) and sudden death. Many Chinese herbal medicines, especially alkaloids, have risks of arrhythmia in clinical application. The characterized mechanisms behind this adverse effect are frequently associated with inhibition of cardiac hERG channels. The present study aimed to assess the potent effect of Rutaecarpine (Rut) on hERG channels. hERG-HEK293 cell was applied for evaluating the effect of Rut on hERG channels and the underlying mechanism. hERG current (IhERG) was measured by patch-clamp technique. Protein levels were analysed by Western blot, and the phosphorylation of Sp1 was determined by immunoprecipitation. Optical mapping and programmed electrical stimulation were used to evaluate cardiac electrophysiological activities, such as APD, QT/QTc, occurrence of arrhythmia, phase singularities (PSs), and dominant frequency (DF). Our results demonstrated that Rut reduced the IhERG by binding to F656 and Y652 amino acid residues of hERG channel instantaneously, subsequently accelerating the channel inactivation, and being trapped in the channel. The level of hERG channels was reduced by incubating with Rut for 24 hours, and Sp1 in nucleus was inhibited simultaneously. Mechanismly, Rut reduced threonine (Thr)/ tyrosine (Tyr) phosphorylation of Sp1 through PI3K/Akt pathway to regulate hERG channels expression. Cell-based model unables to fully reveal the pathological process of arrhythmia. In vivo study, we found that Rut prolonged QT/QTc intervals and increased induction rate of ventricular fibrillation (VF) in guinea pig heart after being dosed Rut for 2 weeks. The critical reasons led to increased incidence of arrhythmias eventually were prolonged APD90 and APD50 and the increase of DF, numbers of PSs, incidence of early after-depolarizations (EADs). Collectively, the results of this study suggest that Rut could reduce the IhERG by binding to hERG channels through F656 and Y652 instantaneously. While, the PI3K/Akt/Sp1 axis may play an essential role in the regulation of hERG channels, from the perspective of the long-term effects of Rut (incubating for 24 hours). Importantly, the changes of electrophysiological properties by Rut were the main cause of VA.  相似文献   

15.
Human ether-á-go-go-related gene (hERG) potassium channels are critical for cardiac action potential repolarization. Cardiac hERG channels comprise two primary isoforms: hERG1a, which has a regulatory N-terminal Per-Arnt-Sim (PAS) domain, and hERG1b, which does not. Isolated, PAS-containing hERG1a N-terminal regions (NTRs) directly regulate NTR-deleted hERG1a channels; however, it is unclear whether hERG1b isoforms contain sufficient machinery to support regulation by hERG1a NTRs. To test this, we constructed a series of PAS domain-containing hERG1a NTRs (encoding amino acids 1-181, 1-228, 1-319, and 1-365). The NTRs were also predicted to form from truncation mutations that were linked to type 2 long QT syndrome (LQTS), a cardiac arrhythmia disorder associated with mutations in the hERG gene. All of the hERG1a NTRs markedly regulated heteromeric hERG1a/hERG1b channels and homomeric hERG1b channels by decreasing the magnitude of the current-voltage relationship and slowing the kinetics of channel closing (deactivation). In contrast, NTRs did not measurably regulate hERG1a channels. A short NTR (encoding amino acids 1-135) composed primarily of the PAS domain was sufficient to regulate hERG1b. These results suggest that isolated hERG1a NTRs directly interact with hERG1b subunits. Our results demonstrate that deactivation is faster in hERG1a/hERG1b channels compared to hERG1a channels because of fewer PAS domains, not because of an inhibitory effect of the unique hERG1b NTR. A decrease in outward current density of hERG1a/hERG1b channels by hERG1a NTRs may be a mechanism for LQTS.  相似文献   

16.
The hERG potassium channel is critical for repolarisation of the cardiac action potential. Reduced expression of hERG at the plasma membrane, whether caused by hereditary mutations or drugs, results in long QT syndrome and increases the risk of ventricular arrhythmias. Thus, it is of fundamental importance to understand how the density of this channel at the plasma membrane is regulated. We used antibodies to an extracellular native or engineered epitope, in conjunction with immunofluorescence and ELISA, to investigate the mechanism of hERG endocytosis in recombinant cells and validated the findings in rat neonatal cardiac myocytes. The data reveal that this channel undergoes rapid internalisation, which is inhibited by neither dynasore, an inhibitor of dynamin, nor a dominant negative construct of Rab5a, into endosomes that are largely devoid of the transferrin receptor. These results support a clathrin-independent mechanism of endocytosis and exclude involvement of dynamin-dependent caveolin and RhoA mechanisms. In agreement, internalised hERG displayed marked overlap with glycosylphosphatidylinositol-anchored GFP, a clathrin-independent cargo. Endocytosis was significantly affected by cholesterol extraction with methyl-β-cyclodextrin and inhibition of Arf6 function with dominant negative Arf6-T27N-eGFP. Taken together, we conclude that hERG undergoes clathrin-independent endocytosis via a mechanism involving Arf6.  相似文献   

17.
Voltage-gated K+ channels are tetramers formed by coassembly of four identical or highly related subunits. All four subunits contribute to formation of the selectivity filter, the narrowest region of the channel pore which determines K+ selective conductance. In some K+ channels, the selectivity filter can undergo a conformational change to reduce K+ flux by a mechanism called C-type inactivation. In human ether-a-go-go–related gene 1 (hERG1) K+ channels, C-type inactivation is allosterically inhibited by ICA-105574, a substituted benzamide. PD-118057, a 2-(phenylamino) benzoic acid, alters selectivity filter gating to enhance open probability of channels. Both compounds bind to a hydrophobic pocket located between adjacent hERG1 subunits. Accordingly, a homotetrameric channel contains four identical activator binding sites. Here we determine the number of binding sites required for maximal drug effect and determine the role of subunit interactions in the modulation of hERG1 gating by these compounds. Concatenated tetramers were constructed to contain a variable number (zero to four) of wild-type and mutant hERG1 subunits, either L646E to inhibit PD-118057 binding or F557L to inhibit ICA-105574 binding. Enhancement of hERG1 channel current magnitude by PD-118057 and attenuated inactivation by ICA-105574 were mediated by cooperative subunit interactions. Maximal effects of the both compounds required the presence of all four binding sites. Understanding how hERG1 agonists allosterically modify channel gating may facilitate mechanism-based drug design of novel agents for treatment of long QT syndrome.  相似文献   

18.
The hERG (human ether-a-go-go-related gene) encodes the α subunit of the rapidly activating delayed rectifier potassium channel (IKr). Dysfunction of hERG channels due to mutations or certain medications causes long QT syndrome, which can lead to fatal ventricular arrhythmias or sudden death. Although the abundance of hERG in the plasma membrane is a key determinant of hERG functionality, the mechanisms underlying its regulation are not well understood. In the present study, we demonstrated that overexpression of the stress-responsive serum- and glucocorticoid-inducible kinase (SGK) isoforms SGK1 and SGK3 increased the current and expression level of the membrane-localized mature proteins of hERG channels stably expressed in HEK 293 (hERG-HEK) cells. Furthermore, the synthetic glucocorticoid, dexamethasone, increased the current and abundance of mature ERG proteins in both hERG-HEK cells and neonatal cardiac myocytes through the enhancement of SGK1 but not SGK3 expression. We have previously shown that mature hERG channels are degraded by ubiquitin ligase Nedd4-2 via enhanced channel ubiquitination. Here, we showed that SGK1 or SGK3 overexpression increased Nedd4-2 phosphorylation, which is known to inhibit Nedd4-2 activity. Nonetheless, disruption of the Nedd4-2 binding site in hERG channels did not eliminate the SGK-induced increase in hERG expression. Additional disruption of Rab11 proteins led to a complete elimination of SGK-mediated increase in hERG expression. These results show that SGK enhances the expression level of mature hERG channels by inhibiting Nedd4-2 as well as by promoting Rab11-mediated hERG recycling.  相似文献   

19.
Blockade of the delayed rectifier potassium channel current, I(Kr), has been associated with drug-induced QT prolongation in the electrocardiogram and life-threatening cardiac arrhythmias. However, it is increasingly clear that compound-induced interactions with multiple cardiac ion channels may significantly affect QT prolongation that would result from inhibition of only I(Kr) [Redfern, W.S., Carlsson, L., et al., 2003. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc. Res. 58(1), 32-45]. Such an assessment may not be feasible in vitro, due to multi-factorial processes that are also time-dependent and highly non-linear. Limited preclinical data, I(Kr) hERG assay and canine Purkinje fiber (PF) action potentials (APs) [Gintant, G.A., Limberis, J.T., McDermott, J.S., Wegner, C.D., Cox, B.F., 2001. The canine Purkinje fiber: an in vitro model system for acquired long QT syndrome and drug-induced arrhythmogenesis. J. Cardiovasc. Pharmacol. 37(5), 607-618], were used for two test compounds in a systems-based modeling platform of cardiac electrophysiology [Muzikant, A.L., Penland, R.C., 2002. Models for profiling the potential QT prolongation risk of drugs. Curr. Opin. Drug. Discov. Dev. 5(1), 127-35] to: (i) convert a canine myocyte model to a PF model by training functional current parameters to the AP data; (ii) reverse engineer the compounds' effects on five channel currents other than I(Kr), predicting significant IC(50) values for I(Na+), sustained and I(Ca2+), L-type , which were subsequently experimentally validated; (iii) use the predicted (I(Na+), sustained and I(Ca2+), L-type) and measured (I(Kr)) IC(50) values to simulate dose-dependent effects of the compounds on APs in endocardial, mid-myocardial, and epicardiac ventricular cells; and (iv) integrate the three types of cellular responses into a tissue-level spatial model, which quantifiably predicted no potential for the test compounds to induce either QT prolongation or increased transmural dispersion of repolarization in a dose-dependent and reverse rate-dependent fashion, despite their inhibition of I(Kr) in vitro.  相似文献   

20.
Mutations to hERG which result in changes to the rapid delayed rectifier current I Kr can cause long and short QT syndromes and are associated with an increased risk of cardiac arrhythmias. Experimental recordings of I Kr reveal the effects of mutations at the channel level, but how these changes translate to the cell and tissue levels remains unclear. We used computational models of human ventricular myocytes and tissues to predict and quantify the effects that de novo hERG mutations would have on cell and tissue electrophysiology. Mutations that decreased I Kr maximum conductance resulted in an increased cell and tissue action potential duration (APD) and a long QT interval on the electrocardiogram (ECG), whereas those that caused a positive shift in the inactivation curve resulted in a decreased APD and a short QT. Tissue vulnerability to re-entrant arrhythmias was correlated with transmural dispersion of repolarisation, and any change to this vulnerability could be inferred from the ECG QT interval or T wave peak-to-end time. Faster I Kr activation kinetics caused cell APD alternans to appear over a wider range of pacing rates and with a larger magnitude, and spatial heterogeneity in these cellular alternans resulted in discordant alternans at the tissue level. Thus, from channel kinetic data, we can predict the tissue-level electrophysiological effects of any hERG mutations and identify how the mutation would manifest clinically, as either a long or short QT syndrome with or without an increased risk of alternans and re-entrant arrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号