首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gong Y  de Lange T 《Molecular cell》2010,40(3):377-387
We previously proposed that POT1 prevents ATR signaling at telomeres by excluding RPA from the single-stranded TTAGGG repeats. Here, we use a Shld1-stabilized degron-POT1a fusion (DD-POT1a) to study the telomeric ATR kinase response. In the absence of Shld1, DD-POT1a degradation resulted in rapid and reversible activation of the ATR pathway in G1 and S/G2. ATR signaling was abrogated by shRNAs to ATR and TopBP1, but shRNAs to the ATM kinase or DNA-PKcs did not affect the telomere damage response. Importantly, ATR signaling in G1 and S/G2 was reduced by shRNAs to RPA. In S/G2, RPA was readily detectable at dysfunctional telomeres, and both POT1a and POT1b were required to exclude RPA and prevent ATR activation. In G1, the accumulation of RPA at dysfunctional telomeres was strikingly less, and POT1a was sufficient to repress ATR signaling. These results support an RPA exclusion model for the repression of ATR signaling at telomeres.  相似文献   

2.
Mammalian telomeres are protected by the shelterin complex, which contains single-stranded telomeric DNA binding proteins (POT1a and POT1b in rodents, POT1 in other mammals). Mouse POT1a prevents the activation of the ATR kinase and contributes to the repression of the nonhomologous end-joining pathway (NHEJ) at newly replicated telomeres. POT1b represses unscheduled resection of the 5′-ended telomeric DNA strand, resulting in long 3′ overhangs in POT1b KO cells. Both POT1 proteins bind TPP1, forming heterodimers that bind to other proteins in shelterin. Short hairpin RNA (shRNA)-mediated depletion had previously demonstrated that TPP1 contributes to the normal function of POT1a and POT1b. However, these experiments did not establish whether TPP1 has additional functions in shelterin. Here we report on the phenotypes of the conditional deletion of TPP1 from mouse embryo fibroblasts. TPP1 deletion resulted in the release of POT1a and POT1b from chromatin and loss of these proteins from telomeres, indicating that TPP1 is required for the telomere association of POT1a and POT1b but not for their stability. The telomere dysfunction phenotypes associated with deletion of TPP1 were identical to those of POT1a/POT1b DKO cells. No additional telomere dysfunction phenotypes were observed, establishing that the main role of TPP1 is to allow POT1a and POT1b to protect chromosome ends.Mammalian cells solve the chromosome end protection problem through the binding of shelterin to the telomeric TTAGGG repeat arrays at chromosome ends (5). Shelterin contains two double-stranded telomeric DNA binding proteins, TRF1 and TRF2, which both interact with the shelterin subunit TIN2. These three shelterin components, as well as the TRF2 interacting factor Rap1, are abundant, potentially covering the majority of the TTAGGG repeat sequences at chromosome ends (30). TIN2 interacts with the less abundant TPP1/POT1 heterodimers and is thought to facilitate the recruitment of the single-stranded telomeric DNA binding proteins to telomeres (15, 21, 35).Shelterin represses the four major pathways that threaten mammalian telomeres (6). It prevents activation of the ATM and ATR kinases, which can induce cell cycle arrest in response to double-strand breaks (DSBs). Shelterin also blocks the two major repair pathways that act on DSBs: nonhomologous end joining (NHEJ) and homology-directed repair (HDR). Removal of individual components of shelterin leads to highly specific telomere dysfunction phenotypes, allowing assignment of shelterin functions to each of its components.The POT1 proteins are critical for the repression of ATR signaling (20). Concurrent deletion of POT1a and POT1b from mouse embryo fibroblasts (POT1a/b DKO cells [12]) activates the ATR kinase at most telomeres, presumably because the single-stranded telomeric DNA is exposed to RPA. POT1a/b DKO cells also have a defect in the structure of the telomere terminus, showing extended 3′ overhangs that are thought to be due to excessive resection of the 5′-ended strand in the absence of POT1b (11-13). The combination of these two phenotypes, activation of the ATR kinase and excess single-stranded telomeric DNA, is not observed when either TRF1 or TRF2 is deleted.In contrast to the activation of ATR signaling in POT1a/b DKO cells, TRF2 deletion results in activation of the ATM kinase at telomeres (3, 16, 20). In addition, TRF2-deficient cells show widespread NHEJ-mediated telomere-telomere fusions (3, 31). This phenotype is readily distinguished from the consequences of POT1a/b loss. POT1a/b DKO cells have a minor telomere fusion phenotype that primarily manifests after DNA replication, resulting in the fusion of sister telomeres (12). In TRF2-deficient cells, most telomere fusions take place in G1 (18), resulting in chromosome-type telomere fusions in the subsequent metaphase. Chromosome-type fusions also occur in the POT1a/b DKO setting, but they are matched in frequency by sister telomere fusions.The type of telomere dysfunction induced by TRF1 loss is also distinct. Deletion of TRF1 gives rise to DNA replication problems at telomeres that activate the ATR kinase in S phase and leads to aberrant telomere structures in metaphase (referred to as “fragile telomeres”) (28). This fragile telomere phenotype is not observed upon deletion of POT1a and POT1b, and the activation of the ATR kinase at telomeres in POT1a/b DKO cells is not dependent on the progression through S phase (Y. Gong and T. de Lange, unpublished data). Furthermore, deletion of TRF1 does not induce excess single-stranded DNA.These phenotypic distinctions bear witness to the separation of functions within shelterin and also serve as a guide to understanding the contribution of the other shelterin proteins, including TPP1. TPP1 is an oligonucleotide/oligosaccharide-binding fold (OB fold) protein in shelterin that forms a heterodimer with POT1 (32). TPP1 and POT1 are distantly related to the TEBPα/β heterodimer, which is bound to telomeric termini of certain ciliates (2, 32, 33). Several lines of evidence indicate that TPP1 mediates the recruitment of POT1 to telomeres. Mammalian TPP1 was discovered based on its interaction with TIN2, and diminished TPP1 levels affect the ability of POT1 to bind to telomeres and protect chromosome ends (14, 15, 21, 26, 33, 35). Since TPP1 enhances the in vitro DNA binding activity of POT1 (32), it might mediate the recruitment of POT1 through improving its interaction with the single-stranded telomeric DNA. However, POT1 does not require its DNA binding domain for telomere recruitment, although this domain is critical for telomere protection (23, 26). Thus, it is more likely that the TPP1-TIN2 interaction mediates the binding of POT1 to telomeres. However, POT1 has also been shown to bind to TRF2 in vitro, and this interaction has been suggested to constitute a second mechanism for the recruitment of POT1 to telomeres (1, 34).TPP1 has been suggested to have additional functions at telomeres. Biochemical data showed that TPP1 promotes the interaction between TIN2, TRF1, and TRF2 (4, 25). Therefore, it was suggested that TPP1 plays an essential organizing function in shelterin, predicting that its deletion would affect TRF1 and TRF2 (25). Furthermore, cytogenetic data on cells from the adrenocortical dysplasia (Acd) mouse strain, which carries a hypomorphic mutation for TPP1 (14), revealed complex chromosomal rearrangements in addition to telomere fusions, leading to the suggestion that TPP1 might have additional telomeric or nontelomeric functions (9).In order to determine the role of TPP1 at telomeres and possibly elsewhere in the genome, we generated a conditional knockout setting in mouse embryo fibroblasts. The results indicate that the main function of TPP1 is to ensure the protection of telomeres by POT1 proteins. Each of the phenotypes of TPP1 loss was also observed in the POT1a/b DKO cells. No evidence was found for a role of TPP1 in stabilizing or promoting the function of other components of shelterin. Furthermore, the results argue against a TPP1-independent mode of telomeric recruitment of POT1.  相似文献   

3.
目的:探究鼠双微体2同源体(MDM2)与端粒保护蛋白1(POT1)在细胞水平是否有相互作用,及其是否发挥E3泛素化连接酶的功能。方法:首先,用蛋白酶体抑制剂MG132处理稳定表达Flag-POT1的HeLa细胞,Western印迹检测Flag-POT1的表达情况;其次,在HeLa细胞中转入外源的Myc-MDM2和Flag-POT1质粒,48 h后收集细胞,通过免疫共沉淀方法验证Myc-MDM2和Flag-POT1是否具有相互作用;再次,在稳定表达Flag-POT1的HeLa细胞中转入Myc-MDM2或MDM2 siRNA,48 h后收集细胞,Western印迹检测Flag-POT1的表达水平。结果:MG132处理后,Flag-POT1的表达量明显升高且有拖尾现象,免疫共沉淀显示Myc-MDM2和Flag-POT1具有相互作用,但无论转入Myc-MDM2还是MDM2 siRNA,Flag-POT1的表达水平没有明显变化。结论:POT1通过泛素化途径降解,MDM2与POT1具有相互作用,但MDM2不是POT1主要的E3泛素化连接酶。  相似文献   

4.
The mammalian protein POT1 binds to telomeric single-stranded DNA (ssDNA), protecting chromosome ends from being detected as sites of DNA damage. POT1 is composed of an N-terminal ssDNA-binding domain and a C-terminal protein interaction domain. With regard to the latter, POT1 heterodimerizes with the protein TPP1 to foster binding to telomeric ssDNA in vitro and binds the telomeric double-stranded-DNA-binding protein TRF2. We sought to determine which of these functions-ssDNA, TPP1, or TRF2 binding-was required to protect chromosome ends from being detected as DNA damage. Using separation-of-function POT1 mutants deficient in one of these three activities, we found that binding to TRF2 is dispensable for protecting telomeres but fosters robust loading of POT1 onto telomeric chromatin. Furthermore, we found that the telomeric ssDNA-binding activity and binding to TPP1 are required in cis for POT1 to protect telomeres. Mechanistically, binding of POT1 to telomeric ssDNA and association with TPP1 inhibit the localization of RPA, which can function as a DNA damage sensor, to telomeres.  相似文献   

5.
Highlights? POT1 binds the telomere overhang sequentially one OB fold at a time ? POT1 binding exhibits 3′ to 5′ directionality ? POT1-TPP1N induces dynamic folding and unfolding of telomeric overhang ? POT1-TPP1N slides back and forth on the telomeric overhang  相似文献   

6.
Human POT1 facilitates telomere elongation by telomerase   总被引:39,自引:0,他引:39  
Mammalian telomeric DNA is mostly composed of double-stranded 5'-TTAGGG-3' repeats and ends with a single-stranded 3' overhang. Telomeric proteins stabilize the telomere by protecting the overhang from degradation or by remodeling the telomere into a T loop structure. Telomerase is a ribonucleoprotein that synthesizes new telomeric DNA. In budding yeast, other proteins, such as Cdc13p, that may help maintain the telomere end by regulating the recruitment or local activity of telomerase have been identified. Pot1 is a single-stranded telomeric DNA binding protein first identified in fission yeast, where it was shown to protect telomeres from degradation [10]. Human POT1 (hPOT1) protein is known to bind specifically to the G-rich telomere strand. We now show that hPOT1 can act as a telomerase-dependent, positive regulator of telomere length. Three splice variants of hPOT1 were overexpressed in a telomerase-positive human cell line. All three variants lengthened telomeres, and splice variant 1 was the most effective. hPOT1 was unable to lengthen the telomeres of telomerase-negative cells unless telomerase activity was induced. These data suggest that a normal function of hPOT1 is to facilitate telomere elongation by telomerase.  相似文献   

7.
Umashankar Singh 《DNA Repair》2013,12(11):876-877
Human POT1, a widely studied telomere protector protein is perceived to be expressed as a single 70 kDa form. A survey of the literature as well as different commercially available antibodies against POT1 suggests occurrence of multiple forms of POT1. Knowledge about possible various forms of an important protein like POT1 is necessary for our understanding about its function. We have discovered that POT1 exists in at least three consistently occurring forms; 90, 70 and 45 kDa. The unexpected molecular weights of POT1 seem to be associated with SUMO1 and ubiquitin conjugation; the latter occurring at a double lysine residue at 289-KK-290. We also present evidence that the relative abundance of the different POT1 forms can be altered by experimental modulation of POT1 nuclear localization. We thus present strong evidence that there are post-translational modifications of POT1 that can affect its molecular weight as well as intracellular localization and function.  相似文献   

8.
POT1 and TRF2 cooperate to maintain telomeric integrity   总被引:17,自引:0,他引:17       下载免费PDF全文
Mammalian telomeric DNA contains duplex TTAGGG repeats and single-stranded overhangs. POT1 (protection of telomeres 1) is a telomere-specific single-stranded DNA-binding protein, highly conserved in eukaryotes. The biological function of human POT1 is not well understood. In the present study, we demonstrate that POT1 plays a key role in telomeric end protection. The reduction of POT1 by RNA interference led to the loss of telomeric single-stranded overhangs and induced apoptosis, chromosomal instability, and senescence in cells. POT1 and TRF2 interacted with each other to form a complex with telomeric DNA. A dominant negative TRF2, TRF2(DeltaBDeltaM), bound to POT1 and prevented it from binding to telomeres. POT1 overexpression protected against TRF2(DeltaBDeltaM)-induced loss of telomeric single-stranded overhangs, chromosomal instability, and senescence. These results demonstrate that POT1 and TRF2 share in part in the same pathway for telomere capping and suggest that POT1 binds to the telomeric single-stranded DNA in the D-loop and cooperates with TRF2 in t-loop maintenance.  相似文献   

9.
Telomeres are nucleoprotein complexes that cap and protect the ends of linear chromosomes. In humans, telomeres end in 50-300 nt of G-rich single-stranded DNA (ssDNA) overhangs. Protection of telomeres 1 (POT1) binds with nanomolar affinity to the ssDNA overhangs and forms a dimer with another telomere-end binding protein called TPP1. Whereas most previous studies utilized telomeric oligonucleotides comprising single POT1-TPP1 binding sites, here, we examined 72- to 144-nt tracts of telomeric DNA containing 6-12 POT1-TPP1 binding sites. Using electrophoretic mobility gel shift assays, size-exclusion chromatography, and electron microscopy, we analyzed telomeric nucleoprotein complexes containing POT1 alone, POT1-TPP1, and a truncated version of POT1 (POT1-N) that maintains its DNA-binding domain. The results revealed that POT1-N and POT1-TPP1 can completely coat long telomeric ssDNA substrates. Furthermore, we show that ssDNA coated with human POT1-TPP1 heterodimers forms compact, potentially ordered structures.  相似文献   

10.
PTOP interacts with POT1 and regulates its localization to telomeres   总被引:1,自引:0,他引:1  
Telomere maintenance has been implicated in cancer and ageing, and requires cooperation between a multitude of telomeric factors, including telomerase, TRF1, TRF2, RAP1, TIN2, Tankyrase, PINX1 and POT1 (refs 1-12). POT1 belongs to a family of oligonucleotide-binding (OB)-fold-containing proteins that include Oxytricha nova TEBP, Cdc13, and spPot1, which specifically recognize telomeric single-stranded DNA (ssDNA). In human cells, the loading of POT1 to telomeric ssDNA controls telomerase-mediated telomere elongation. Surprisingly, a human POT1 mutant lacking an OB fold is still recruited to telomeres. However, the exact mechanism by which this recruitment occurs remains unclear. Here we identify a novel telomere protein, PTOP, which interacts with both POT1 and TIN2. PTOP binds to the carboxyl terminus of POT1 and recruits it to telomeres. Inhibition of PTOP by RNA interference (RNAi) or disruption of the PTOP-POT1 interaction hindered the localization of POT1 to telomeres. Furthermore, expression of the respective interaction domains on PTOP and POT1 alone extended telomere length in human cells. Therefore, PTOP heterodimerizes with POT1 and regulates POT1 telomeric recruitment and telomere length.  相似文献   

11.
12.
13.
14.
Single-stranded DNA-binding proteins form protective caps at the chromosome ends and their binding is important in the regulation of telomerase access to telomeres. This group of proteins is represented by POT1 proteins described in yeast, humans and other model organisms. Here we review recent findings obtained in Arabidopsis POT1-like paralogs, namely the observed diversity in their interaction features and corresponding functions.  相似文献   

15.
Xue Y  Rushton MD  Maringele L 《PLoS genetics》2011,7(12):e1002417
Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA-damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular "band-aid" for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA-dependent DNA-damage responses in eukaryotic cells.  相似文献   

16.
Telomeres are macromolecular nucleoprotein complexes that protect the ends of eukaryotic chromosomes from degradation, end-to-end fusion events, and from engaging the DNA damage response. However, the assembly of this essential DNA-protein complex is poorly understood. Telomere DNA consists of the repeated double-stranded sequence 5′-TTAGGG-3′ in vertebrates, followed by a single-stranded DNA overhang with the same sequence. Both double- and single-stranded regions are coated with high specificity by telomere end-binding proteins, including POT1 and TPP1, that bind as a heterodimer to single-stranded telomeric DNA. Multiple POT1-TPP1 proteins must fully coat the single-stranded telomere DNA to form a functional telomere. To better understand the mechanism of multiple binding, we mutated or deleted the two guanosine nucleotides residing between adjacent POT1-TPP1 recognition sites in single-stranded telomere DNA that are not required for multiple POT1-TPP1 binding events. Circular dichroism demonstrated that spectra from the native telomere sequence are characteristic of a G-quadruplex secondary structure, whereas the altered telomere sequences were devoid of these signatures. The altered telomere strands, however, facilitated more cooperative loading of multiple POT1-TPP1 proteins compared with the wild-type telomere sequence. Finally, we show that a 48-nucleotide DNA with a telomere sequence is more susceptible to nuclease digestion when coated with POT1-TPP1 proteins than when it is left uncoated. Together, these data suggest that POT1-TPP1 binds telomeric DNA in a coordinated manner to facilitate assembly of the nucleoprotein complexes into a state that is more accessible to enzymatic activity.  相似文献   

17.
The HepA-related protein (HARP/SMARCAL1) is an ATP-dependent annealing helicase that is capable of rewinding DNA structures that are stably unwound due to binding of the single-stranded DNA (ssDNA)-binding protein Replication Protein A (RPA). HARP has been implicated in maintaining genome integrity through its role in DNA replication and repair, two processes that generate RPA-coated ssDNA. In addition, mutations in HARP cause a rare disease known as Schimke immuno-osseous dysplasia. In this study, we purified HARP containing complexes with the goal of identifying the predominant factors that stably associate with HARP. We found that HARP preferentially interacts with RPA molecules that are bound to the DNA-dependent protein kinase (DNA-PK). We also found that RPA is phosphorylated by DNA-PK in vitro, while the RPA-HARP complexes are not. Our results suggest that, in addition to its annealing helicase activity, which eliminates the natural binding substrate for RPA, HARP blocks the phosphorylation of RPA by DNA-PK.  相似文献   

18.
To prevent ATR activation, telomeres deploy the single-stranded DNA binding activity of TPP1/POT1a. POT1a blocks the binding of RPA to telomeres, suggesting that ATR is repressed through RPA exclusion. However, comparison of the DNA binding affinities and abundance of TPP1/POT1a and RPA indicates that TPP1/POT1a by itself is unlikely to exclude RPA. We therefore analyzed the?central shelterin protein TIN2, which links TPP1/POT1a (and POT1b) to TRF1 and TRF2 on the double-stranded telomeric DNA. Upon TIN2 deletion, telomeres lost TPP1/POT1a, accumulated RPA, elicited an ATR signal, and showed all other phenotypes of POT1a/b deletion. TIN2 also affected the TRF2-dependent repression of ATM kinase signaling but not to TRF2-mediated inhibition of telomere fusions. Thus, while TIN2 has a minor contribution to the repression of ATM by TRF2, its major role is to stabilize TPP1/POT1a on the ss telomeric DNA, thereby allowing effective exclusion of RPA and repression of ATR signaling.  相似文献   

19.
POT1 stimulates RecQ helicases WRN and BLM to unwind telomeric DNA substrates   总被引:11,自引:0,他引:11  
Defects in human RecQ helicases WRN and BLM are responsible for the cancer-prone disorders Werner syndrome and Bloom syndrome. Cellular phenotypes of Werner syndrome and Bloom syndrome, including genomic instability and premature senescence, are consistent with telomere dysfunction. RecQ helicases are proposed to function in dissociating alternative DNA structures during recombination and/or replication at telomeric ends. Here we report that the telomeric single-strand DNA-binding protein, POT1, strongly stimulates WRN and BLM to unwind long telomeric forked duplexes and D-loop structures that are otherwise poor substrates for these helicases. This stimulation is dependent on the presence of telomeric sequence in the duplex regions of the substrates. In contrast, POT1 failed to stimulate a bacterial 3'-5'-helicase. We find that purified POT1 binds to WRN and BLM in vitro and that full-length POT1 (splice variant 1) precipitates a higher amount of endogenous WRN protein, compared with BLM, from the HeLa nuclear extract. We propose roles for the cooperation of POT1 with RecQ helicases WRN and BLM in resolving DNA structures at telomeric ends, in a manner that protects the telomeric 3' tail as it is exposed during unwinding.  相似文献   

20.
POT1 (protection of telomere 1) is a highly conserved single-stranded telomeric binding protein that is essential for telomere end protection. Here, we report the cloning and characterization of a second member of the mouse POT family. POT1b binds telomeric DNA via conserved DNA binding oligonucleotide/oligosaccharide (OB) folds. Compared to POT1a, POT1b OB-folds possess less sequence specificity for telomeres. In contrast to POT1a, truncated POT1b possessing only the OB-folds can efficiently localize to telomeres in vivo. Overexpression of a mutant Pot1b allele that cannot bind telomeric DNA initiated a DNA damage response at telomeres that led to p53-dependent senescence. Furthermore, a reduction of the 3' G-rich overhang, increased chromosomal fusions and elevated homologous recombination (HR) were observed at telomeres. shRNA mediated depletion of endogenous Pot1b in Pot1a deficient cells resulted in increased chromosomal aberrations. Our results indicate that POT1b plays important protective functions at telomeres and that proper maintenance of chromosomal stability requires both POT proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号