首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Macroautophagy is an evolutionarily conserved vacuolar, self-digesting mechanism for cellular components, which end up in the lysosomal compartment. In mammalian cells, macroautophagy is cytoprotective, and protects the cells against the accumulation of damaged organelles or protein aggregates, the loss of interaction with the extracellular matrix, and the toxicity of cancer therapies. During periods of nutrient starvation, stimulating macroautophagy provides the fuel required to maintain an active metabolism and the production of ATP. Macroautophagy can inhibit the induction of several forms of cell death, such as apoptosis and necrosis. However, it can also be part of the cascades of events that lead to cell death, either by collaborating with other cell death mechanisms or by causing cell death on its own. Loss of the regulation of bulk macroautophagy can prime self-destruction by cells, and some forms of selective autophagy and non-canonical forms of macroautophagy have been shown to be associated with cell demise. There is now mounting evidence that autophagy and apoptosis share several common regulatory elements that are crucial in any attempt to understand the dual role of autophagy in cell survival and cell death.  相似文献   

2.
Francisella tularensis is a highly virulent intracellular pathogen that invades and replicates within numerous host cell types including macrophages, hepatocytes and pneumocytes. By 24 hours post invasion, F. tularensis replicates up to 1000-fold in the cytoplasm of infected cells. To achieve such rapid intracellular proliferation, F. tularensis must scavenge large quantities of essential carbon and energy sources from the host cell while evading anti-microbial immune responses. We found that macroautophagy, a eukaryotic cell process that primarily degrades host cell proteins and organelles as well as intracellular pathogens, was induced in F. tularensis infected cells. F. tularensis not only survived macroautophagy, but optimal intracellular bacterial growth was found to require macroautophagy. Intracellular growth upon macroautophagy inhibition was rescued by supplying excess nonessential amino acids or pyruvate, demonstrating that autophagy derived nutrients provide carbon and energy sources that support F. tularensis proliferation. Furthermore, F. tularensis did not require canonical, ATG5-dependent autophagy pathway induction but instead induced an ATG5-independent autophagy pathway. ATG5-independent autophagy induction caused the degradation of cellular constituents resulting in the release of nutrients that the bacteria harvested to support bacterial replication. Canonical macroautophagy limits the growth of several different bacterial species. However, our data demonstrate that ATG5-independent macroautophagy may be beneficial to some cytoplasmic bacteria by supplying nutrients to support bacterial growth.  相似文献   

3.
One of the fundamental functions of molecular chaperone proteins is to selectively conjugate cellular proteins, targeting them directly to lysosome. Some of chaperones, such as the stress-induced Hsp70, also play important roles in autophagosome-forming macroautophagy under various stress conditions. However, the role of their co-chaperones in autophagy regulation has not been well defined. We here show that Tid1, a DnaJ co-chaperone for Hsp70 and the mammalian homologue of the Drosophila tumor suppressor Tid56, is a key mediator of macroautophagy pathway. Ectopic expression of Tid1 induces autophagy by forming LC3+ autophagosome foci, whereas silencing Tid1 leads to drastic impairment of autophagy as induced by nutrient deprivation or rapamycin. In contrast, Hsp70 is dispensable for a role in nutrient deprivation-induced autophagy. The murine Tid1 can be replaced with human Tid1 in murine fibroblast cells for induction of autophagy. We further show that Tid1 increases autophagy flux by interacting with the Beclin1-PI3 kinase class III protein complex in response to autophagy inducing signal and that Tid1 is an essential mediator that connects IκB kinases to the Beclin1-containing autophagy protein complex. Together, these results reveal a crucial role of Tid1 as an evolutionarily conserved and essential mediator of canonical macroautophagy.  相似文献   

4.
Degradation processes are important for optimal functioning of eukaryotic cells. The two major protein degradation pathways in eukaryotes are the ubiquitin–proteasome pathway and autophagy. This contribution focuses on autophagy. This process is important for survival of cells during nitrogen starvation conditions but also has a house keeping function in removing exhausted, redundant or unwanted cellular components. We present an overview of the molecular mechanism involved in three major autophagy pathways: chaperone mediated autophagy, microautophagy and macroautophagy. Various recent reports indicate that autophagy plays a crucial role in human health and disease. Examples are presented of lysosomal storage diseases and the role of autophagy in cancer, neurodegenerative diseases, defense against pathogens and cell death.  相似文献   

5.
《Autophagy》2013,9(5):567-573
Autophagy is a cellular process whose primary function is to degrade long-lived proteins and recycle cellular components. Beside macroautophagy, there are several forms of selective autophagy, including chaperone-mediated autophagy (CMA), cytoplasm to vacuole targeting (Cvt), pexophagy, and mitophagy. In this review, we summarize what is currently known about selective autophagy, and discuss its role in cell death and survival. We also discuss possible mechanisms underlying the selectivity of macroautophagy.  相似文献   

6.
Yu L  Strandberg L  Lenardo MJ 《Autophagy》2008,4(5):567-573
Autophagy is a cellular process whose primary function is to degrade long-lived proteins and recycle cellular components. Beside macroautophagy, there are several forms of selective autophagy, including chaperone-mediated autophagy (CMA), cytoplasm to vacuole targeting (Cvt), pexophagy and mitophagy. In this review, we summarize what is currently known about selective autophagy, and discuss its role in cell death and survival. We also discuss possible mechanisms underlying the selectivity of macroautophagy.  相似文献   

7.
Macroautophagy has been implicated as a mechanism of cell death. However, the relationship between this degradative pathway and cell death is unclear as macroautophagy has been shown recently to protect against apoptosis. To better define the interplay between these two critical cellular processes, we determined whether inhibition of macroautophagy could have both pro-apoptotic and anti-apoptotic effects in the same cell. Embryonic fibroblasts from mice with a knock-out of the essential macroautophagy gene atg5 were treated with activators of the extrinsic and intrinsic death pathways. Loss of macroautophagy sensitized these cells to caspase-dependent apoptosis from the death receptor ligands Fas and tumor necrosis factor-alpha (TNF-alpha). Atg5-/- mouse embryonic fibroblasts had increased activation of the mitochondrial death pathway in response to Fas/TNF-alpha in concert with decreased ATP levels. Fas/TNF-alpha treatment failed to up-regulate macroautophagy, and in fact, decreased activity at late time points. In contrast to their sensitization to Fas/TNF-alpha, Atg5-/- cells were resistant to death from menadione and UV light. In the absence of macroautophagy, an up-regulation of chaperone-mediated autophagy induced resistance to these stressors. These results demonstrate that inhibition of macroautophagy can promote or prevent apoptosis in the same cell and that the response is governed by the nature of the death stimulus and compensatory changes in other forms of autophagy. Experimental findings that an inhibition of macroautophagy blocks apoptosis do not prove that autophagy mediates cell death as this effect may result from the protective up-regulation of other autophagic pathways such as chaperone-mediated autophagy.  相似文献   

8.
自噬在病原真菌生殖中的作用   总被引:1,自引:0,他引:1  
自噬是真核生物中重要且高度保守的蛋白降解过程。在此过程中,细胞中的细胞器、长寿蛋白及其他大分子物质被双层膜的自噬体包裹并运送至降解细胞器中进行降解并重新利用。自噬在病原真菌诸如细胞分化、营养动态平衡以及致病性等各种细胞过程中起重要作用。在本综述中,我们简要介绍了自噬过程,并以人体病原真菌新生隐球菌为例介绍了病原真菌的有性生殖过程;同时我们也总结了目前模式病原真菌中自噬相关基因的研究情况以及自噬调控病原真菌无性和有性生殖的可能机理;最后我们总结全文并讨论了未来自噬调控真菌有性生殖机理研究的工作方向。  相似文献   

9.
Autophagy (which includes macro-, micro-, and chaperone-mediated autophagy) is an important biological mechanism for degradation of damaged/obsolete macromolecules and organelles. Ageing non-dividing cells, however, progressively accumulate oxidised proteins, defective organelles and intralysosomal lipofuscin inclusions, suggesting inherent insufficiency of autophagy. To learn more about the role of macroautophagy in the turnover of organelles and lipofuscin formation, we inhibited autophagic sequestration with 3-methyladenine (3 MA) in growth-arrested human fibroblasts, a classical model of cellular ageing. Such treatment resulted in a dramatic accumulation of altered lysosomes, displaying lipofuscin-like autofluorescence, as well as in a moderate increase of mitochondria with lowered membrane potential. The size of the late endosomal compartment appeared not to be significantly altered following 3 MA exposure. The accumulation of lipofuscin-like material was enhanced when 3 MA administration was combined with hyperoxia. The findings suggest that macroautophagy is essential for normal turnover of lysosomes. This notion is supported by reports in the literature of lysosomal membrane proteins inside lysosomes and/or late endosomes, as well as lysosomes with active hydrolases within autophagosomes following vinblastine-induced block of fusion between lysosomes and autophagosomes. The data also suggest that specific components of lysosomes, such as membranes and proteins, may be direct sources of lipofuscin.  相似文献   

10.
MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.  相似文献   

11.
Shai Bel 《Autophagy》2018,14(4):719-721
Secretion of antimicrobial proteins is an important host defense mechanism against bacteria, yet how secretory cells maintain function during bacterial invasion has been unclear. We discovered that Paneth cells, specialized secretory cells in the small intestine, react to bacterial invasion by rerouting a critical secreted antibacterial protein through a macroautophagy/autophagy-based secretion system termed secretory autophagy. Mice harboring a mutation in an essential autophagy gene, a mutation which is common in Crohn disease patients, cannot reroute their antimicrobial cargo during bacterial invasion and thus have compromised innate immunity. We showed that this alternative secretion system is triggered by both a cell-intrinsic mechanism, involving the ER stress response, and a cell-extrinsic mechanism, involving subepithelial innate immune cells. Our findings uncover a new role for secretory autophagy in host defense and suggest how a mutation in an autophagy gene can predispose individuals to Crohn disease.  相似文献   

12.
Macroautophagy is a process of regulated turnover of cellular constituents that occurs during development and under conditions of stress such as starvation. Defects in autophagy have serious consequences, as they have been linked to neurodegenerative disease, cancer, and cardiomyopathy. This process, which exists in all eukaryotic cells, is tightly controlled, but in extreme cases results in the death of the cell. While major insights into the molecular and biochemical pathways involved have come from genetic studies in yeast, little is known about autophagic pathways in mammalian cells, particularly in neurons. Recently, research in neuronal culture models has begun to identify some characteristics of neuronal macroautophagy. The results suggest that macroautophagy in neurons may provide a neuroprotective mechanism. Here, we review the defining characteristics of autophagy with special attention to its role in neurodegenerative disorders, and recent efforts to delineate the pathway of autophagic protein degradation in neurons.  相似文献   

13.
14.
A growing number of evidences indicate a strict causality between the reduction of autophagic functionality and aging. In this context the preservation of a proper autophagic response is of paramount importance to preserve the cellular processes in aging cell. Nutrients availability, especially for amino acids, is the most physiological key regulator of macroautophagy. In mammalian cells the knowledge of the mechanism and the underlying regulation of macroautophagy has been greatly improved in recent years and we focus on the role of nutrients, in particular on their involvement in preventing cellular aging through the modulation of autophagy. This review covers the main features of macroautophagy regulation by nutrients, in particular amino acids as well as glucose and vitamins, and its mechanisms, focusing primarily on the mammalian hepatocyte, which has been extensively utilized to dissect signaling pathways underlying the regulation of macroautophagy.  相似文献   

15.
Singh R  Czaja MJ 《Autophagy》2008,4(4):516-518
The relationship between the degradative process of autophagy and cellular death pathways remains unclear. Macroautophagy may potentially function to prevent or promote cell death, and both effects have been reported in studies of cells with a block in macroautophagy. To better delineate the function of macroautophagy in cell death, we contrasted the responses to death stimuli in wild-type and atg5(-/-) murine embryonic fibroblasts. We have reported that a knockout of the critical macroautophagy gene ATG5 sensitizes cells to death receptor ligand-induced death from Fas and tumor necrosis factor-alpha. Death occurs by caspase-dependent apoptosis resulting from activation of the mitochondrial death pathway. In contrast, atg5(-/-) cells are more resistant to death induced by oxidative stress from menadione or UV light. This resistance was associated with an upregulation of chaperone-mediated autophagy. Inhibition of this form of autophagy sensitizes cells to death from menadione, suggesting that the compensatory upregulation of chaperone-mediated autophagy, and not the loss of macroautophagy, prevents death from menadione. These findings demonstrate that the effects of a loss of macroautophagy on the cellular death response differ depending on the mechanism of cellular injury and the compensatory changes in other forms of autophagy.  相似文献   

16.
Autophagy is an evolutionarily conserved homeostatic process for the turnover of cellular contents, organelles and misfolded proteins through the lysosomal machinery. Recently, the involvement of autophagy in the pathophysiology of neurodegenerative diseases has attracted considerable interest because autophagy deregulation has been linked to some of these neurodegenerative disorders. This interest is further heightened by the demonstration that various autophagic pathways, including macroautophagy and chaperone-mediated autophagy, are implicated in the turnover of proteins that are prone to aggregation in cellular or animal disease models. These observations have stimulated new awareness in the pivotal role of the autophagic pathways in neurodegenerative disease pathophysiology, and have sparked extensive research aimed at deciphering the mechanisms by which autophagy is altered in these disorders. Here, we summarize the latest advances in our understanding of the role of autophagy deregulation in Parkinson's, Alzheimer's and Huntington's disease.  相似文献   

17.
Ubiquilin proteins are conserved across all eukaryotes and function in the regulation of protein degradation. We found that ubiquilin functions to regulate macroautophagy and that the protein is also a substrate of chaperone-mediated autophagy.Key words: autophagy, cell death, LC3, protein turnover, ubiquitinUbiquilin proteins are present in all eukaryotes and appear to function in protein degradation pathways. Humans contain four ubiquilin genes each encoding a separate protein. The proteins are approximately 600 amino acids in length and share extensive homology with one another. They are characterized by an N-terminal sequence that is very similar to ubiquitin, called the ubiquitin-like domain (UBL), followed by a longer, more variable central domain, and terminate with a conserved 50-amino-acid sequence called a ubiquitin-associated domain (UBA). This structural organization is characteristic of proteins that function to deliver ubiquitinated proteins to the proteasome for degradation. In accordance with this function, the UBL domain of ubiquilin binds subunits of the proteasome, and its UBA domain binds to polyubiquitin chains that are typically conjugated onto proteins that are marked for destruction. Indeed, we recently showed that ubiquilin is recruited to the endoplasmic reticulum where it binds and promotes the degradation of misfolded proteins to the proteasome during ER-associated degradation (ERAD).Remarkably, ubiquilin was also recently reported to be involved in macroautophagy. The finding was based on colocalization of ubiquilin with autophagosomal marker LC3 in cells, and because overexpression of ubiquilin-1 suppresses and silencing of its expression enhances, starvation-induced cell death. In our recently published paper we describe our evidence linking ubiquilin to autophagy. We demonstrate that ubiquilin is indeed present in different structures associated with macroautophagy and that it is required for a critical step in autophagosome formation. Additionally, we also demonstrate that ubiquilin is a substrate of chaperone-mediated autophagy. The findings suggest that ubiquilin might play an important, and perhaps a crucial, role in dictating the pathway of protein degradation in cells.In previous studies we found that ubiquilin proteins expressed in normal growing HeLa cells are very stable with a rate of turnover in excess of 20 h. Because most long-lived proteins are degraded by autophagy, we felt it was important to distinguish whether ubiquilin localization in autophagosomes was simply related to the expected route of degradation of the protein or whether it was related to some special function in autophagy. Accordingly, our experiments were designed to distinguish between these two possibilities.Using double immunofluorescence microscopy we found that endogenous ubiquilin and LC3 proteins are present in puncta in HeLa cells. To ensure this was not an artifact of the staining procedure, we cotransfected HeLa cells with ubiquilin-1 and LC3 expression constructs that were tagged with either mRFP or GFP proteins and again found that the two expressed proteins are colocalized in puncta, irrespective of which tag was fused to the proteins. Further evidence supporting ubiquilin localization to autophagosomes was obtained by showing strong enrichment of ubiquilin proteins upon purification of autophagosomes from mouse liver and by the strong immunogold staining of the protein in autophagosomes in mouse brains in a transgenic mouse model of Alzheimer disease.To determine if ubiquilin localization to autophagosomes is mediated by interaction with LC3 we conducted immunoprecipitation experiments to examine whether the two proteins coimmunoprecipitate with each other. Indeed, our results showed that the two proteins coimmunoprecipitate with one another, indicating that they bind together in a complex. However, we did not detect any strong binding between bacterially expressed forms of the proteins, suggesting that the interaction between the proteins in cells might be mediated by a bridging factor(s).We next used a pH-sensitive tandem-tagged mCherry-GFP-LC3 reporter that is used to monitor maturation of autophagosomes to autolysosomes to determine whether ubiquilin is present during the different steps of macroautophagy. Indeed, we found that anti-ubiquilin staining is present throughout the different structures involved in the process, and interestingly, we also noted that the structures are enriched for K48- and K63-ubiquitin linkages. Because ubiquilin contains a UBA domain that binds ubiquitin chains we examined whether proteins containing K48- and K63-ubiquitin linkages coimmunoprecipitate with ubiquilin. Indeed, our immunoblots indicated that proteins containing both of these types of linkages coprecipitate with ubiquilin, consistent with the idea that ubiquilin might target proteins with diverse ubiquitin linkages for degradation by autophagy.To determine if ubiquilin is required for autophagy, we knocked down the ubiquilin-1 and -2 proteins in HeLa cells (which mainly express these two ubiquilin isoforms) by siRNA transfection and examined if loss of the proteins altered LC3-I and LC3-II levels. Interestingly, we found that ubiquilin knockdown over a 72 h time period is associated with a progressive increase in LC3-I levels and a concomitant decrease in LC3-II levels. Furthermore, ubiquilin knockdown led to an ∼45% reduction in the number of cells containing five or more autophagosomes. Based on these results we propose that ubiquilin is required for maturation of LC3-I to LC3-II, which we speculate might be related to the requirement of the protein in macroautophagy.We next asked if ubiquilin protein is consumed during autophagy. We examined this by treating HeLa cells with puromycin to induce protein misfolding and macroautophagy. Immunoblot analysis of the protein lysates examined at 2 h intervals over a 7 h period of exposure to puromycin revealed a direct correlation between stimulation of macroautophagy and a time-dependent decrease in the ubiquilin and LC3-II protein levels. The time-dependent decline in the proteins is inhibited by treatment of cells with two different autophagy inhibitors, 3-methyladenine and bafilomycin A1. The results suggest that ubiquilin protein is consumed during macroautophagy.The consumption of ubiquilin during macroautophagy prompted us to examine if ubiquilin might also be involved in chaperone-mediated autophagy (CMA), which involves the active transport of proteins into lysosomes. Support for this idea arose because ubiquilin proteins contain two sequences that conform to a pentapeptide motif involved in CMA. An in vitro CMA assay using recombinant GST-ubiquilin-1 fusion protein and purified lysosomes confirmed ubiquilin is an active CMA substrate. The results suggested that ubiquilin can be consumed by two different types of autophagy, macroautophagy and CMA. We speculate that this dual mode of consumption may provide a potential switch whereby changes in ubiquilin levels beyond a certain threshold might trigger execution of either macroautophagy or CMA. The idea that such a switch exists stems from previous work that showed inhibition of CMA can lead to activation of macroautophagy and vice versa.Several intriguing new questions emerge from this and previous works, including what exact function ubiquilin serves in autophagy, particularly in the execution of macroautophagy and CMA. Is there a signal that instructs ubiquilin to choose between its known functions in autophagy and ERAD or is the choice random? What role do its different domains play in these processes? The answers to these questions are likely to be important because in previous studies we showed that overexpression of ubiquilin protects cells against potentially toxic mutant huntingtin proteins containing polyglutamine expansions. In our new work we also found that ubiquilin overexpression protects cells against starvation-induced cell death caused by mutations in presenilin-2 proteins. The underlying conclusion from these studies is that ubiquilin appears to play important roles in regulating protein degradation pathways that are likely to have important implications in cell survival. Clearly, understanding ubiquilin function in different protein degradation pathways could lead to novel approaches to prevent diseases associated with protein misfolding.  相似文献   

18.
A cell needs to maintain a balance between biosynthesis and degradation of cellular components to maintain homeostasis. There are 2 pathways, the proteasome, which degrades short-lived proteins, and the autophagy/lysosomal pathway, which degrades long-lived proteins and organelles. Both of these pathways are also involved in antigen presentation or the effective delivery of peptides to MHC molecules for presentation to T cells. Autophagy (macroautophagy) is a key player in providing substantial sources of citrullinated peptides for loading onto MHC-II molecules to stimulate CD4+ T cell responses. Stressful conditions in the tumor microenvironment induce autophagy in cancer cells as a mechanism to promote their survival. We therefore investigated if citrullinated peptides could stimulate CD4+ T cell responses that would recognize these modifications produced during autophagy within tumor cells. Focusing on the intermediate filament protein VIM (vimentin), we generated citrullinated VIM peptides for immunization experiments in mice. Immunization with these peptides induced CD4+ T cells in response to autophagic tumor targets. Remarkably, a single immunization with modified peptide, up to 14 d after tumor implant, resulted in long-term survival in 60% to 90% of animals with no associated toxicity. These results show how CD4+ cells can mediate potent antitumor responses against modified self-epitopes presented on tumor cells, and they illustrate for the first time how the citrullinated peptides produced during autophagy may offer especially attractive vaccine targets for cancer therapy.  相似文献   

19.
Autophagy is a primarily degradative pathway that takes place in all eukaryotic cells. It is used for recycling cytoplasm to generate macromolecular building blocks and energy under stress conditions, to remove superfluous and damaged organelles to adapt to changing nutrient conditions and to maintain cellular homeostasis. In addition, autophagy plays a critical role in cytoprotection by preventing the accumulation of toxic proteins and through its action in various aspects of immunity including the elimination of invasive microbes and its participation in antigen presentation. The most prevalent form of autophagy is macroautophagy, and during this process, the cell forms a double-membrane sequestering compartment termed the phagophore, which matures into an autophagosome. Following delivery to the vacuole or lysosome, the cargo is degraded and the resulting macromolecules are released back into the cytosol for reuse. The past two decades have resulted in a tremendous increase with regard to the molecular studies of autophagy being carried out in yeast and other eukaryotes. Part of the surge in interest in this topic is due to the connection of autophagy with a wide range of human pathophysiologies including cancer, myopathies, diabetes and neurodegenerative disease. However, there are still many aspects of autophagy that remain unclear, including the process of phagophore formation, the regulatory mechanisms that control its induction and the function of most of the autophagy-related proteins. In this review, we focus on macroautophagy, briefly describing the discovery of this process in mammalian cells, discussing the current views concerning the donor membrane that forms the phagophore, and characterizing the autophagy machinery including the available structural information.  相似文献   

20.
Autophagy/macroautophagy is known for its role in cellular homeostasis, development, cell survival, aging, immunity, cancer and neurodegeneration. However, until recently, the mechanisms by which autophagy contributes to these important processes were largely unknown. The demonstration of a direct cross-talk between autophagy and NF-kappaB opens up new frontiers for deciphering the role of autophagy in diverse biological processes. Here, we review our current understanding of autophagy, with a focus on its role in tumor suppression, NF-kappaB inactivation and selective protein degradation in mammals. We also list some most intriguing and outstanding questions that are likely to engage researchers in the near future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号