首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Centrosomal protein 55 (Cep55), which is localized to the centrosome in interphase cells and recruited to the midbody during cytokinesis, is a regulator required for the completion of cell abscission. Up-regulation of Cep55 and inactivation of p53 occur in the majority of human cancers, raising the possibility of a link between these two genes. In this study we evaluated the role of p53 in Cep55 regulation. We demonstrated that Cep55 expression levels are well correlated with cancer cell growth rate and that p53 is able to negatively regulate Cep55 protein and promoter activity. Down-regulation of expression of Cep55 was accompanied by repression of polo-like kinase 1 (Plk1) levels due to p53 induction. Overexpression of Plk1 and knockdown of p53 expression both enhanced the post-translational protein stability of Cep55. BI 2356, a selective Plk1 inhibitor, however, prevented Cep55 accumulation in p53 knockdown cells while persistently keeping Plk1 levels elevated. Our results, therefore, indicate the existence of a p53-Plk1-Cep55 axis in which p53 negatively regulates expression of Cep55, through Plk1 which, in turn, is a positive regulator of Cep55 protein stability.  相似文献   

2.
Centrosomes in mammalian cells have recently been implicated in cytokinesis; however, their role in this process is poorly defined. Here, we describe a human coiled-coil protein, Cep55 (centrosome protein 55 kDa), that localizes to the mother centriole during interphase. Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation. Upon mitotic entry, centrosome dissociation of Cep55 is triggered by Erk2/Cdk1-dependent phosphorylation at S425 and S428. Furthermore, Cep55 locates to the midbody and plays a role in cytokinesis, as its depletion by siRNA results in failure of this process. S425/428 phosphorylation is required for interaction with Plk1, enabling phosphorylation of Cep55 at S436. Cells expressing phosphorylation-deficient mutant forms of Cep55 undergo cytokinesis failure. These results highlight the centrosome as a site to organize phosphorylation of Cep55, enabling it to relocate to the midbody to function in mitotic exit and cytokinesis.  相似文献   

3.
Cytokinesis requires a membrane-remodeling and fission event termed abscission that occurs after chromosome segregation, cleavage furrow formation, and contraction have completed. In this study, we show how abscission factor recruitment is controlled by the Polo-like kinase 1 (Plk1). At the metaphase-anaphase transition, Plk1 initiates cleavage furrow formation and is then progressively degraded during mitotic exit. During this period, Plk1 phosphorylates the abscission factor Cep55 in trans and prevents its untimely recruitment to the anaphase spindle. A Plk1 phosphorylation site mutant of Cep55 is prematurely recruited to the anaphase spindle and fails to support abscission. Endogenous Cep55 behaves similarly after Plk1 inhibition by the drugs BI2536 or GW842862. Only once Plk1 is degraded can Cep55 target to the midbody and promote abscission. Blocking Plk1 degradation leads to elevated levels of Plk1 at the midbody and the failure of Cep55 recruitment. Thus, Plk1 activity negatively regulates Cep55 to ensure orderly abscission factor recruitment and ensures that this occurs only once cell contraction has completed.  相似文献   

4.
We report the characterization of Cep170, a forkhead-associated (FHA) domain protein of previously unknown function. Cep170 was identified in a yeast two-hybrid screen for interactors of Polo-like kinase 1 (Plk1). In human cells, Cep170 is constantly expressed throughout the cell cycle but phosphorylated during mitosis. It interacts with Plk1 in vivo and can be phosphorylated by Plk1 in vitro, suggesting that it is a physiological substrate of this kinase. Both overexpression and small interfering RNA (siRNA)-mediated depletion studies suggest a role for Cep170 in microtuble organization and cell morphology. Cep170 associates with centrosomes during interphase and with spindle microtubules during mitosis. As shown by immunoelectron microscopy, Cep170 associates with subdistal appendages, typical of the mature mother centriole. Thus, anti-Cep170 antibodies stain only one centriole during G1, S, and early G2, but two centrioles during late G2 phase of the cell cycle. We show that Cep170 labeling can be used to discriminate bona fide centriole overduplication from centriole amplification that results from aborted cell division.  相似文献   

5.
The Polo-like kinase 1 (Plk1) is a key regulator of mitosis. It is reported that the human peptidyl-prolyl cis/trans-isomerase Pin1 binds to Plk1 from mitotic cell extracts in vitro. Here we demonstrate that Ser-65 in Pin1 is the major site for Plk1-specific phosphorylation, and the polo-box domain of Plk1 is required for this phosphorylation. Interestingly, the phosphorylation of Pin1 by Plk1 does not affect its isomerase activity but rather is linked to its protein stability. Pin1 is ubiquitinated in HeLa S3 cells, and substitution of Glu for Ser-65 reduces the ubiquitination of Pin1. Furthermore, inhibition of Plk1 activity by expression of a dominant negative form of Plk1 or by transfection of small interfering RNA targeted to Plk1 enhances the ubiquitination of Pin1 and subsequently reduces the amount of Pin1 in human cancer cells. Since previous reports suggested that Plk1 is a substrate of Pin1, our work adds a new dimension to this interaction of two important mitotic regulators.  相似文献   

6.
The rearrangement of the Golgi apparatus during mitosis is regulated by several protein kinases, including Cdk1 and Plk1. Several peripheral Golgi proteins that dissociate from the Golgi during mitosis are implicated in regulation of cytokinesis or chromosome segregation, thereby coordinating mitotic and cytokinetic events to Golgi rearrangement. Here we show that, at the onset of mitosis, Cdk1 phosphorylates the peripheral Golgi protein Nir2 at multiple sites; of these, S382 is the most prominent. Phosphorylation of Nir2 by Cdk1 facilitates its dissociation from the Golgi apparatus, and phospho-Nir2(pS382) is localized in the cleavage furrow and midbody during cytokinesis. Mitotic phosphorylation of Nir2 is required for docking of the phospho-Ser/Thr binding module, the Polo box domain of Plk1, and overexpression of a Nir2 mutant, which fails to interact with Plk1, affects the completion of cytokinesis. These results demonstrate a mechanism for coordinating mitotic and cytokinetic events with Golgi rearrangement during cell division.  相似文献   

7.
Precise cell division is essential for multicellular development, and defects in this process have been linked to cancer. Septins are a family of proteins that are required for mammalian cell division, but their function and mode of regulation during this process are poorly understood. Here, we demonstrate that cyclin-dependent kinase 1 (Cdk1) phosphorylates septin 9 (SEPT9) upon mitotic entry, and this phosphorylation controls association with the proline isomerase, Pin1. Both SEPT9 and Pin1 are critical for mediating the final separation of daughter cells. Expression of mutant SEPT9 that is defective in Pin1 binding was unable to rescue cytokinesis defects caused by SEPT9 depletion but rather induced dominant-negative defects in cytokinesis. However, unlike SEPT9 depletion, Pin1 was not required for the accumulation of the exocyst complex at the midbody. These results suggest that SEPT9 plays multiple roles in abscission, one of which is regulated by the action of Cdk1 and Pin1.  相似文献   

8.
We report here an efficient functional genomic analysis by combining information on the gene expression profiling, cellular localization, and loss-of-function studies. Through this analysis, we identified Cep55 as a regulator required for the completion of cytokinesis. We found that Cep55 localizes to the mitotic spindle during prometaphase and metaphase and to the spindle midzone and the midbody during anaphase and cytokinesis. At the terminal stage of cytokinesis, Cep55 is required for the midbody structure and for the completion of cytokinesis. In Cep55-knockdown cells, the Flemming body is absent, and the structural and regulatory components of the midbody are either absent or mislocalized. Cep55 also facilitates the membrane fusion at the terminal stage of cytokinesis by controlling the localization of endobrevin, a v-SNARE required for cell abscission. Biochemically, Cep55 is a microtubule-associated protein that efficiently bundles microtubules. Cep55 directly binds to MKLP1 in vitro and associates with the MKLP1-MgcRacGAP centralspindlin complex in vivo. Cep55 is under the control of centralspindlin, as knockdown of centralspindlin abolished the localization of Cep55 to the spindle midzone. Our study defines a cellular mechanism that links centralspindlin to Cep55, which, in turn, controls the midbody structure and membrane fusion at the terminal stage of cytokinesis.  相似文献   

9.
Survivin and Plk1 kinase are important mediators of cell survival that are required for chromosome alignment, cytokinesis, and protection from apoptosis. Interference with either survivin or Plk1 activity manifests many similar outcomes: prometaphase delay/arrest, multinucleation, and increased apoptosis. Moreover, the expression of both survivin and Plk1 is deregulated in cancer. Given these similarities, we speculated that these two proteins may cooperate during mitosis and/or in cell death pathways. Here we report that survivin and Plk1 interact during mitosis and that Plk1 phosphorylates survivin at serine 20. Importantly, we find that overexpression of a non-phosphorylatable version, S20A, is unable to correct chromosomes connected to the spindle in a syntelic manner during prometaphase and allows cells harboring these maloriented chromosomes to enter anaphase, evading the spindle tension checkpoint. By contrast, the constitutive phosphomimic, S20D, completes congression and division ahead of schedule and, unlike S20A, is able to support proliferation in the absence of the endogenous protein. Despite the importance of this residue in mitosis, its mutation does not appear to affect the anti-apoptotic activity of survivin in response to TRAIL. Together, these data suggest that phosphorylation of survivin at Ser20 by Plk1 kinase is essential for accurate chromosome alignment and cell proliferation but is dispensable for its anti-apoptotic activity in cancer cells.  相似文献   

10.
Cytokinesis is the last step of the M (mitosis) phase, yet it is crucial for the faithful division of one cell into two. Cytokinesis failure is often associated with cancer. Cytokinesis can be morphologically divided into four steps: cleavage furrow initiation, cleavage furrow ingression, midbody formation and abscission. Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis. At the same time, Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis, including cytokinesis. Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks. More specifically, Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1, thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains. Ect2 itself can be phosphorylated by Plk1 in vitro. Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity. Once activated, RhoA-GTP will activate downstream effectors, including ROCK1 and ROCK2. ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen, and Plk1 can phosphorylate ROCK2 in vitro. We review current understandings of the interplay between Plk1, RhoA proteins and other proteins (e.g., NudC, MKLP2, PRC1, CEP55) involved in cytokinesis, with particular emphasis of its clinical implications in cancer.  相似文献   

11.
Cytokinesis is the last step of the M (mitosis) phase,yet it is crucial for the faithful division of one cell into two.Cytokinesis failure is often associated with cancer.Cytokinesis can be morphologically divided into four steps:cleavage furrow initiation,cleavage furrow ingression,midbody formation and abscission.Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis.At the same time,Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis,including cytokinesis.Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks.More specifically,Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1,thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains.Ect2 itself can be phosphorylated by Plk1 in vitro.Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity.Once activated,RhoA-GTP will activate downstream effectors,including ROCK1 and ROCK2.ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen,and Plk1 can phosphorylate ROCK2 in vitro.We review current understandings of the interplay between Plk1,RhoA proteins and other proteins (e.g.,NudC,MKLP2,PRC1,CEP55) involved in cytokinesis,with partitular emphasis of its clinical implications in cancer.  相似文献   

12.
OBJECTIVE: Both RhoA (Rho1) and polo-like kinase 1 (Plk1) are implicated in the regulation of cytokinesis, a cellular process that marks the division of cytoplasm of a parent cell into daughter cells after nuclear division. Cytokinesis failure is often accompanied by the generation of cells with an unstable tetraploid content, which predisposes it to chromosomal instability and oncogenic transformation. Several studies using lower eukaryotic systems demonstrate that RhoA and Plk1 are essential for mitotic progression and cytokinesis. MATERIALS AND METHODS: Physical and functional interactions between RhoA and Plk-1 were analyzed using subcellular localization of RhoA and Plk1 in HeLa cells by immunofluorescence and co-precipitation techniques, followed by Western blotting in RhoA transfected cells. RESULTS: Plk1 localizes to kinetochores as well as to spindle poles during prophase and metaphase; it translocates to the midbody during telophase. RhoA is also enriched at the midbody region during telophase and colocalizes with Plk1. Recombinant RhoA, expressed as a GFP fusion protein, is enriched in the nucleus of HeLa and U2OS cells. Ectopically expressed GFP-RhoA does not cause significant cell death, although there exist a group of cells that appear to exhibit a delay in mitotic exit or in impaired cytokinesis. CONCLUSION: Co-immunoprecipitation reveals that RhoA and Plk1 physically interact and that their interaction appears to be enhanced during mitosis. Given the role of RhoA and Plk1 in cytokinesis, our findings suggest that regulated activation of RhoA is important for cytokinesis and that Plk1 may alter activation of RhoA during mitotic cytokinesis.  相似文献   

13.
Cytokinesis is the final step of cell division which partitions genetic and cytosolic content into daughter cells. Failed cytokinesis causes polyploidy, genetic instability, and cancer. Kinases use phosphorylation to regulate the timing and location of the cytokinetic furrow. Polo-like kinase 1 (Plk1) is an essential mitotic kinase that triggers cytokinesis by phosphorylating MgcRacGAP to create a docking site for Ect2 at the central spindle. Ect2 binds to MgcRacGAP via its N-terminal BRCT domain (BRCA1 C-terminal), which docks at specific phosphorylated residues. Here we investigate the minimal Plk1-dependent phosphorylation sites required for cytokinesis onset. We demonstrate that phosphorylation of the major MgcRacGAP site, S157, is necessary but not sufficient to bind the Ect2 BRCT domain. Phosphorylation of an additional residue on MgcRacGAP at S164 is also required to elicit efficient binding. Surprisingly, BRCT binding additionally requires MKLP1 and its cognate interacting N-terminal domain of MgcRacGAP. Our findings indicate that central spindle assembly and 2 Plk1-dependent phosphorylations are required to establish efficient binding of the Ect2 BRCT in early cytokinesis. We propose that these requirements establish a high threshold to restrain premature or ectopic cytokinesis.  相似文献   

14.
Accurate chromosome segregation during cell division maintains genomic integrity and requires the proper establishment of kinetochore-microtubule attachment in mitosis. As a key regulator of mitosis, Polo-like kinase 1 (Plk1) is essential for this attachment process, but the molecular mechanism remains elusive. Here we identify Sgt1, a cochaperone for Hsp90, as a novel Plk1 substrate during mitosis. We show that Sgt1 dynamically localizes at the kinetochores, which lack microtubule attachments during prometaphase. Plk1 is required for the kinetochore localization of Sgt1 and phosphorylates serine 331 of Sgt1 at the kinetochores. This phosphorylation event enhances the association of the Hsp90-Sgt1 chaperone with the MIS12 complex to stabilize this complex at the kinetochores and thus coordinates the recruitment of the NDC80 complex to form efficient microtubule-binding sites. Disruption of Sgt1 phosphorylation reduces the MIS12 and NDC80 complexes at the kinetochores, impairs stable microtubule attachment, and eventually results in chromosome misalignment to delay the anaphase onset. Our results demonstrate a mechanism for Plk1 in promoting kinetochore-microtubule attachment to ensure chromosome stability.  相似文献   

15.
During mitosis, chromosomes undergo dynamic structural changes that include condensation of chromosomes – the formation of individual compact chromosomes necessary for faithful segregation of sister chromatids in anaphase. Polo-like kinase 1 (Plk1) regulates multiple mitotic events by binding to targeting factors at different mitotic structures in a phosphorylation dependent manner. In this study, we report the identification of a putative ATPase that targets Plk1 to chromosome arms during mitosis. PICH (Plk1-interacting checkpoint “helicase”) displays a temporal localization on chromosome arms and kinetochores during early mitosis. Interaction with PICH recruits Plk1 to chromosome arms and disruption of this interaction abolishes Plk1 localization on chromosome arms. Moreover, depletion of PICH or overexpression of PICH mutant that is defective in Plk1 binding or ATP binding causes defects in mitotic chromosome compaction, formation of anaphase bridge and cytokinesis failure. We provide data to show that both PICH phosphorylation and its ATPase activity are required for mitotic chromosome compaction. Our study provides a mechanism for targeting Plk1 to chromosome arms and suggests that the PICH ATPase activity is important for the regulation of mitotic chromosome architecture.  相似文献   

16.
We previously reported that phosphorylation of myosin II-interacting guanine nucleotide exchange factor (MyoGEF) by polo-like kinase 1 (Plk1) promotes the localization of MyoGEF to the central spindle and increases MyoGEF activity toward RhoA during mitosis. In this study we report that aurora B-mediated phosphorylation of MyoGEF at Thr-544 creates a docking site for Plk1, leading to the localization and activation of MyoGEF at the central spindle. In vitro kinase assays show that aurora B can phosphorylate MyoGEF. T544A mutation drastically decreases aurora B-mediated phosphorylation of MyoGEF in vitro and in transfected HeLa cells. Coimmunoprecipitation and in vitro pulldown assays reveal that phosphorylation of MyoGEF at Thr-544 enhances the binding of Plk1 to MyoGEF. Immunofluorescence analysis shows that aurora B colocalizes with MyoGEF at the central spindle and midbody during cytokinesis. Suppression of aurora B activity by an aurora B inhibitor disrupts the localization of MyoGEF to the central spindle. In addition, T544A mutation interferes with the localization of MyoGEF to the cleavage furrow and decreases MyoGEF activity toward RhoA during mitosis. Taken together, our results suggest that aurora B coordinates with Plk1 to regulate MyoGEF activation and localization, thus contributing to the regulation of cytokinesis.  相似文献   

17.
Cell division is controlled through cooperation of different kinases. Of these, polo-like kinase 1 (Plk1) and p90 ribosomal S6 kinase 1 (RSK1) play key roles. Plk1 acts as a G(2)/M trigger, and RSK1 promotes G(1) progression. Although previous reports show that Plk1 is suppressed by RSK1 during meiosis in Xenopus oocytes, it is still not clear whether this is the case during mitosis or whether Plk1 counteracts the effects of RSK1. Few animal models are available for the study of controlled and transient cell cycle arrest. Here we show that encysted embryos (cysts) of the primitive crustacean Artemia are ideal for such research because they undergo complete cell cycle arrest when they enter diapause (a state of obligate dormancy). We found that Plk1 suppressed the activity of RSK1 during embryonic mitosis and that Plk1 was inhibited during embryonic diapause and mitotic arrest. In addition, studies on HeLa cells using Plk1 siRNA interference and overexpression showed that phosphorylation of RSK1 increased upon interference and decreased after overexpression, suggesting that Plk1 inhibits RSK1. Taken together, these findings provide insights into the regulation of Plk1 during cell division and Artemia diapause cyst formation and the correlation between the activity of Plk1 and RSK1.  相似文献   

18.

Background

CDK11p58 is a mitotic protein kinase, which has been shown to be required for different mitotic events such as centrosome maturation, chromatid cohesion and cytokinesis.

Methodology/Principal Findings

In addition to these previously described roles, our study shows that CDK11p58 inhibition induces a failure in the centriole duplication process in different human cell lines. We propose that this effect is mediated by the defective centrosomal recruitment of proteins at the onset of mitosis. Indeed, Plk4 protein kinase and the centrosomal protein Cep192, which are key components of the centriole duplication machinery, showed reduced levels at centrosomes of mitotic CDK11-depleted cells. CDK11p58, which accumulates only in the vicinity of mitotic centrosomes, directly interacts with the centriole-associated protein kinase Plk4 that regulates centriole number in cells. In addition, we show that centriole from CDK11 defective cells are not able to be over duplicated following Plk4 overexpression.

Conclusion/Significance

We thus propose that CDK11 is required for centriole duplication by two non-mutually-exclusive mechanisms. On one hand, the observed duplication defect could be caused indirectly by a failure of the centrosome to fully maturate during mitosis. On the other hand, CDK11p58 could also directly regulate key centriole components such as Plk4 during mitosis to trigger essential mitotic centriole modifications, required for centriole duplication during subsequent interphase.  相似文献   

19.
Recovery from DNA damage is critical for cell survival. However, serious damage cannot be repaired, leading to cell death for prevention of abnormal cell growth. Previously, we demonstrated that 4N-DNA accumulates via the initiation of an abnormal interphase without cytokinesis and that re-replication occurs during a prolonged recovery period in the presence of severe DNA damage in mitotic cells. Mitotic phosphorylated Plk1 is typically degraded during mitotic exit. However, Plk1 has unusually found to be dephosphorylated in mitotic slippage without cytokinesis during recovery from mitotic DNA damage. Here, we investigated how Plk1 dephosphorylation is established during recovery from mitotic DNA damage. Mitotic DNA damage activated ATM and Chk1/2 and repressed Cdk1 and Greatwall protein kinase, followed by PP2A activation through the dissociation of ENSA and PP2A-B55. Interaction between Plk1 and PP2A-B55α or PP2A-B55δ was strongly induced during recovery from mitotic DNA damage. Moreover, the depletion of PP2A-B55α and/or PP2A-B55δ by siRNA transfection led to the recovery of Plk1 phosphorylation and progression of the cell cycle into the G1 phase. Therefore, to adapt to severe DNA damage, the activated Greatwall/ENSA signaling pathway was repressed by ATM/Chk1/2, even in mitotic cells. Activation of the PP2A-B55 holoenzyme complex induced the dephosphorylation of Plk1 and Cdk1, and finally, mitotic slippage occurred without normal chromosome segregation and cytokinesis.  相似文献   

20.
Polo-like kinase 1 (Plk1) is a key regulator of cell division in eukaryotic cells. In this short review, we briefly summarized the well-established functions modulated by Plk1 during mitosis. Beyond mitosis, we focused mainly on the unexpected processes in which Plk1 emerges as a critical player, including microtubule dynamics, DNA replication, chromosome dynamics, p53 regulation, and recovery from the G2 DNA-damage checkpoint. Our discussion is mainly based on the critical substrates targeted by Plk1 during these cellular events and the functional significance associated with each phosphorylation event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号