首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specification of metazoan centromeres does not depend strictly on centromeric DNA sequences, but also requires epigenetic factors. The mechanistic basis for establishing a centromeric "state" on the DNA remains unclear. In this work, we have directly examined replication timing of the prekinetochore domain of human chromosomes. Kinetochores were labeled by expression of epitope-tagged CENP-A, which stably marks prekinetochore domains in human cells. By immunoprecipitating CENP-A mononucleosomes from synchronized cells pulsed with [(3)H]thymidine we demonstrate that CENP-A-associated DNA is replicated in mid-to-late S phase. Cytological analysis of DNA replication further demonstrated that centromeres replicate asynchronously in parallel with numerous other genomic regions. In contrast, quantitative Western blot analysis demonstrates that CENP-A protein synthesis occurs later, in G2. Quantitative fluorescence microscopy and transient transfection in the presence of aphidicolin, an inhibitor of DNA replication, show that CENP-A can assemble into centromeres in the absence of DNA replication. Thus, unlike most genomic chromatin, histone synthesis and assembly are uncoupled from DNA replication at the kinetochore. Uncoupling DNA replication from CENP-A synthesis suggests that regulated chromatin assembly or remodeling could play a role in epigenetic centromere propagation.  相似文献   

2.
《遗传学报》2021,48(6):463-472
Centromeres are chromosomal loci marked by histone variant Cen H3(centromeric histone H3) and essential for genomic stability and cell division. The budding yeast E3 ubiquitin ligase Psh1 selectively recognizes the yeast Cen H3(Cse4) for ubiquitination and controls the cellular level of Cse4 for proteolysis,but the underlying mechanism remains largely unknown. Here, we show that Psh1 uses a Cse4-binding domain(CBD, residues 1-211) to interact with Cse4-H4 instead of H3-H4, yielding a dissociation constant(K_d) of 27 nM. Psh1 recognizes Cse4-specific residues in the L1 loop and a2 helix to ensure Cse4 binding and ubiquitination. We map the Psh1-binding region of Cse4-H4 and identify a wide range of Cse4-specific residues required for the Psh1-mediated Cse4 recognition and ubiquitination. Further analyses reveal that histone chaperone Scm3 can impair Cse4 ubiquitination by abrogating Psh1-Cse4 binding. Together, our study reveals a novel Cse4-binding mode distinct from those of known Cen H3 chaperones and elucidates the mechanism by which Scm3 competes with Psh1 for Cse4 binding.  相似文献   

3.
The Cse4 nucleosome at each budding yeast centromere must be faithfully assembled each cell cycle to specify the site of kinetochore assembly and microtubule attachment for chromosome segregation. Although Scm3 is required for the localization of the centromeric H3 histone variant Cse4 to centromeres, its role in nucleosome assembly has not been tested. We demonstrate that Scm3 is able to mediate the assembly of Cse4 nucleosomes in vitro, but not H3 nucleosomes, as measured by a supercoiling assay. Localization of Cse4 to centromeres and the assembly activity depend on an evolutionarily conserved core motif in Scm3, but localization of the CBF3 subunit Ndc10 to centromeres does not depend on this motif. The centromere targeting domain of Cse4 is sufficient for Scm3 nucleosome assembly activity. Assembly does not depend on centromeric sequence. We propose that Scm3 plays an active role in centromeric nucleosome assembly.  相似文献   

4.
5.
The centromere plays an essential role in accurate chromosome segregation, and defects in its function lead to aneuploidy and thus cancer. The centromere-specific histone H3 variant CENP-A is proposed to be the epigenetic mark of the centromere, as active centromeres require CENP-A–containing nucleosomes to direct the recruitment of multiple kinetochore proteins. CENP-A K124 ubiquitylation, mediated by CUL4A-RBX1-COPS8 E3 ligase activity, is required for CENP-A deposition at the centromere. However, the mechanism that controls the E3 ligase activity of the CUL4A-RBX1-COPS8 complex remains obscure. We have discovered that the SGT1-HSP90 complex is required for recognition of CENP-A by COPS8. Thus, the SGT1-HSP90 complex contributes to the E3 ligase activity of the CUL4A complex that is necessary for CENP-A ubiquitylation and CENP-A deposition at the centromere.  相似文献   

6.
Mislocalization of the centromeric histone H3 variant (Cse4 in budding yeast, CID in flies, CENP-A in humans) to noncentromeric regions contributes to chromosomal instability (CIN) in yeast, fly, and human cells. Overexpression and mislocalization of CENP-A have been observed in cancers, however, the mechanisms that facilitate the mislocalization of overexpressed CENP-A have not been fully explored. Defects in proteolysis of overexpressed Cse4 (GALCSE4) lead to its mislocalization and synthetic dosage lethality (SDL) in mutants for E3 ubiquitin ligases (Psh1, Slx5, SCFMet30, and SCFCdc4), Doa1, Hir2, and Cdc7. In contrast, defects in sumoylation of overexpressed cse4K215/216/A/R prevent its mislocalization and do not cause SDL in a psh1Δ strain. Here, we used a genome-wide screen to identify factors that facilitate the mislocalization of overexpressed Cse4 by characterizing suppressors of the psh1Δ GALCSE4 SDL. Deletions of histone H4 alleles (HHF1 or HHF2), which were among the most prominent suppressors, also suppress slx5Δ, cdc4-1, doa1Δ, hir2Δ, and cdc7-4 GALCSE4 SDL. Reduced dosage of H4 leads to defects in sumoylation and reduced mislocalization of overexpressed Cse4, which contributes to suppression of CIN when Cse4 is overexpressed. We determined that the hhf1-20, cse4-102, and cse4-111 mutants, which are defective in the Cse4-H4 interaction, also exhibit reduced sumoylation of Cse4 and do not display psh1Δ GALCSE4 SDL. In summary, we have identified genes that contribute to the mislocalization of overexpressed Cse4 and defined a role for the gene dosage of H4 in facilitating Cse4 sumoylation and mislocalization to noncentromeric regions, leading to CIN when Cse4 is overexpressed.  相似文献   

7.
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
  相似文献   

8.
《Developmental cell》2020,52(3):379-394.e7
  1. Download : Download high-res image (137KB)
  2. Download : Download full-size image
  相似文献   

9.
Centromeres define the chromosomal position where kinetochores form to link the chromosome to microtubules during mitosis and meiosis. Centromere identity is determined by incorporation of a specific histone H3 variant termed CenH3. As for other histones, escort and deposition of CenH3 must be ensured by histone chaperones, which handle the non‐nucleosomal CenH3 pool and replenish CenH3 chromatin in dividing cells. Here, we show that the Arabidopsis orthologue of the mammalian NUCLEAR AUTOANTIGENIC SPERM PROTEIN (NASP) and Schizosaccharomyces pombe histone chaperone Sim3 is a soluble nuclear protein that binds the histone variant CenH3 and affects its abundance at the centromeres. NASPSIM3 is co‐expressed with Arabidopsis CenH3 in dividing cells and binds directly to both the N‐terminal tail and the histone fold domain of non‐nucleosomal CenH3. Reduced NASPSIM3 expression negatively affects CenH3 deposition, identifying NASPSIM3 as a CenH3 histone chaperone.  相似文献   

10.
Shugoshin is an evolutionarily conserved protein, which is involved in tension sensing on mitotic chromosomes, kinetochore biorientation, and protection of centromeric (CEN) cohesin for faithful chromosome segregation. Interaction of the C-terminus of Sgo1 with phosphorylated histone H2A regulates its association with CEN and pericentromeric (peri-CEN) chromatin, whereas mutations in histone H3 selectively compromise the association of Sgo1 with peri-CEN but not CEN chromatin. Given that histone H3 is absent from CEN and is replaced by a histone H3 variant CENP-ACse4, we investigated if CENP-ACse4 interacts with Sgo1 and promotes its association with the CEN chromatin. In this study, we found that Sgo1 interacts with CENP-ACse4 in vivo and in vitro. The N-terminus coiled-coil domain of Sgo1 without the C-terminus (sgo1-NT) is sufficient for its interaction with CENP-ACse4, association with CEN but not the peri-CEN, and this CEN association is cell cycle dependent with maximum enrichment in mitosis. In agreement with the role of CENP-ACse4 in CEN maintenance of Sgo1, depletion of CENP-ACse4 results in the loss of Sgo1 and sgo1-NT from the CEN chromatin. The N-terminus of Sgo1 is required for genome stability as a mutant lacking the N-terminus (sgo1-CT) exhibits increased chromosome missegregation when compared to a sgo1-NT mutant. In summary, our results define a novel role for the N-terminus of Sgo1 in CENP-ACse4 mediated recruitment of Sgo1 to CEN chromatin for faithful chromosome segregation.  相似文献   

11.
Kinetochores are large protein assemblies built on chromosomal loci named centromeres. The main functions of kinetochores can be grouped under four modules. The first module, in the inner kinetochore, contributes a sturdy interface with centromeric chromatin. The second module, the outer kinetochore, contributes a microtubule‐binding interface. The third module, the spindle assembly checkpoint, is a feedback control mechanism that monitors the state of kinetochore–microtubule attachment to control the progression of the cell cycle. The fourth module discerns correct from improper attachments, preventing the stabilization of the latter and allowing the selective stabilization of the former. In this review, we discuss how the molecular organization of the four modules allows a dynamic integration of kinetochore–microtubule attachment with the prevention of chromosome segregation errors and cell‐cycle progression.  相似文献   

12.
13.
14.
In metazoans, a ≈1 megadalton (MDa) multiprotein complex comprising the dynein–dynactin adaptor Spindly and the ROD–Zwilch–ZW10 (RZZ) complex is the building block of a fibrous biopolymer, the kinetochore fibrous corona. The corona assembles on mitotic kinetochores to promote microtubule capture and spindle assembly checkpoint (SAC) signaling. We report here a high‐resolution cryo‐EM structure that captures the essential features of the RZZ complex, including a farnesyl‐binding site required for Spindly binding. Using a highly predictive in vitro assay, we demonstrate that the SAC kinase MPS1 is necessary and sufficient for corona assembly at supercritical concentrations of the RZZ–Spindly (RZZS) complex, and describe the molecular mechanism of phosphorylation‐dependent filament nucleation. We identify several structural requirements for RZZS polymerization in rings and sheets. Finally, we identify determinants of kinetochore localization and corona assembly of Spindly. Our results describe a framework for the long‐sought‐for molecular basis of corona assembly on metazoan kinetochores.  相似文献   

15.
16.
Chromosome instability (CIN) contributes to the development of many cancer. In this paper, we summarize our recent finding that a novel pathway by which FBW7 loss promotes Centromere Protein A (CENP-A) phosphorylation on Serine 18 through Cyclin E1/CDK2, therefore promoting CIN and tumorigenesis. Our finding demonstrates the importance of CENP-A post-translational modification on modulating centromere and mitotic functions in cancer.  相似文献   

17.
At the core of chromosome segregation is the centromere, which nucleates the assembly of a macromolecular kinetochore (centromere DNA and associated proteins) complex responsible for mediating spindle attachment. Recent advances in centromere research have led to identification of many kinetochore components, such as the centromeric-specific histone H3 variant, CenH3, and its interacting partner, Scm3. Both are essential for chromosome segregation and are evolutionarily conserved from yeast to humans. CenH3 is proposed to be the epigenetic mark that specifies centromeric identity. Molecular mechanisms that regulate the assembly of kinetochores at specific chromosomal sites to mediate chromosome segregation are not fully understood. In this review, we summarize the current literature and discuss results from our laboratory, which show that restricting the localization of budding yeast CenH3, Cse4, to centromeres and balanced stoichiometry between Scm3 and Cse4, contribute to faithful chromosome transmission. We highlight our findings that, similar to other eukaryotic centromeres, budding yeast centromeric histone H4 is hypoacetylated, and we discuss how altered histone acetylation affects chromosome segregation. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

18.
Fidelity of chromosome segregation is ensured by a tension-dependent error correction system that prevents stabilization of incorrect chromosome-microtubule attachments. Unattached or incorrectly attached chromosomes also activate the spindle assembly checkpoint, thus delaying mitotic exit until all chromosomes are bioriented. The Aurora B kinase is widely recognized as a component of error correction. Conversely, its role in the checkpoint is controversial. Here, we report an analysis of the role of Aurora B in the spindle checkpoint under conditions believed to uncouple the effects of Aurora B inhibition on the checkpoint from those on error correction. Partial inhibition of several checkpoint and kinetochore components, including Mps1 and Ndc80, strongly synergizes with inhibition of Aurora B activity and dramatically affects the ability of cells to arrest in mitosis in the presence of spindle poisons. Thus, Aurora B might contribute to spindle checkpoint signalling independently of error correction. Our results support a model in which Aurora B is at the apex of a signalling pyramid whose sensory apparatus promotes the concomitant activation of error correction and checkpoint signalling pathways.  相似文献   

19.
In order to gain insight into the function of the Saccharomyces cerevisiae SWI/SNF complex, we have identified DNA sequences to which it is bound genomewide. One surprising observation is that the complex is enriched at the centromeres of each chromosome. Deletion of the gene encoding the Snf2 subunit of the complex was found to cause partial redistribution of the centromeric histone variant Cse4 to sites on chromosome arms. Cultures of snf2Δ yeast were found to progress through mitosis slowly. This was dependent on the mitotic checkpoint protein Mad2. In the absence of Mad2, defects in chromosome segregation were observed. In the absence of Snf2, chromatin organisation at centromeres is less distinct. In particular, hypersensitive sites flanking the Cse4 containing nucleosomes are less pronounced. Furthermore, SWI/SNF complex was found to be especially effective in the dissociation of Cse4 containing chromatin in vitro. This suggests a role for Snf2 in the maintenance of point centromeres involving the removal of Cse4 from ectopic sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号