首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The intracellular regulation of cell death pathways by cIAPs has been enigmatic. Here we show that loss of cIAPs promotes the spontaneous formation of an intracellular platform that activates either apoptosis or necroptosis. This 2 MDa intracellular complex that we designate "Ripoptosome" is necessary but not sufficient for cell death. It contains RIP1, FADD, caspase-8, caspase-10, and caspase inhibitor cFLIP isoforms. cFLIP(L) prevents Ripoptosome formation, whereas, intriguingly, cFLIP(S) promotes Ripoptosome assembly. When cIAPs are absent, caspase activity is the "rheostat" that is controlled by cFLIP isoforms in the Ripoptosome and decides if cell death occurs by RIP3-dependent necroptosis or caspase-dependent apoptosis. RIP1 is the core component of the complex. As exemplified by our studies for TLR3 activation, our data argue that the?Ripoptosome critically influences the outcome of membrane-bound receptor triggering. The differential quality of cell death mediated by the Ripoptosome may cause important pathophysiological consequences during inflammatory responses.  相似文献   

2.
There remains a significant gap in our quantitative understanding of crosstalk between apoptosis and necroptosis pathways.By employing the SWATH-MS technique,we quantified absolute amounts of up to thousands of proteins in dynamic assembling/de-assembling of TNF signaling complexes.Combining SWATH-MS-based network modeling and experimental validation,we found that when RIP1 level is below~1000 molecules/cell(mpc),the cell solely undergoes TRADD-dependent apoptosis.When RIP1 is above~1000 mpc,pro-caspase-8 and RIP3 are recruited to necrosome respectively with linear and nonlinear dependence on RIP1 amount,which well explains the co-occurrence of apoptosis and necroptosis and the paradoxical obser-vations that RIP1 is required for necroptosis but its increase down-regulates necroptosis.Higher amount of RIP1(>~46,000 mpc)suppresses apoptosis,leading to necroptosis alone.The relation between RIP1 level and occurrence of necroptosis or total cell death is biphasic.Our study provides a resource for encoding the com-plexity of TNF signaling and a quantitative picture how distinct dynamic interplay among proteins function as basis sets in signaling complexes,enabling RIP1 to play diverse roles in governing cell fate decisions.  相似文献   

3.
4.
X Liu  F Shi  Y Li  X Yu  S Peng  W Li  X Luo  Y Cao 《Cell death & disease》2016,7(7):e2293
Necroptosis is a novel form of programmed cell death that is independent of caspase activity. Different stimuli can trigger necroptosis. At present, the most informative studies about necroptosis derive from the tumor necrosis factor (TNF)-triggered system. The initiation of TNF-induced necroptosis requires the kinase activity of receptor-interacting protein 1 and 3 (RIP1 and RIP3). Evidence now reveals that the ability of RIP1 and RIP3 to modulate this key cellular event is tightly controlled by post-translational modifications, including ubiquitination, phosphorylation, caspase 8-mediated cleavage and GlcNAcylation. These regulatory events coordinately determine whether a cell will survive or die by apoptosis or necroptosis. In this review, we highlight recent advances in the study of post-translational modifications during TNF-induced necroptosis and discuss how these modifications regulate the complex and delicate control of programmed necrosis.  相似文献   

5.
TNF receptor 1 signaling induces NF-κB activation and necroptosis in L929 cells. We previously reported that cellular inhibitor of apoptosis protein-mediated receptor-interacting protein 1 (RIP1) ubiquitination acts as a cytoprotective mechanism, whereas knockdown of cylindromatosis, a RIP1-deubiquitinating enzyme, protects against tumor necrosis factor (TNF)-induced necroptosis. We report here that RIP1 is a crucial mediator of canonical NF-κB activation in L929 cells, therefore questioning the relative cytoprotective contribution of RIP1 ubiquitination versus canonical NF-κB activation. We found that attenuated NF-κB activation has no impact on TNF-induced necroptosis. However, we identified A20 and linear ubiquitin chain assembly complex as negative regulators of necroptosis. Unexpectedly, and in contrast to RIP3, we also found that knockdown of RIP1 did not block TNF cytotoxicity. Cell death typing revealed that RIP1-depleted cells switch from necroptotic to apoptotic death, indicating that RIP1 can also suppress apoptosis in L929 cells. Inversely, we observed that Fas-associated protein via a death domain, cellular FLICE inhibitory protein and caspase-8, which are all involved in the initiation of apoptosis, counteract necroptosis induction. Finally, we also report RIP1-independent but RIP3-mediated necroptosis in the context of TNF signaling in particular conditions.  相似文献   

6.
A role for cellular inhibitors of apoptosis (IAPs [cIAPs]) in preventing CD95 death has been suspected but not previously explained mechanistically. In this study, we find that the loss of cIAPs leads to a dramatic sensitization to CD95 ligand (CD95L) killing. Surprisingly, this form of cell death can only be blocked by a combination of RIP1 (receptor-interacting protein 1) kinase and caspase inhibitors. Consistently, we detect a large increase in RIP1 levels in the CD95 death-inducing signaling complex (DISC) and in a secondary cytoplasmic complex (complex II) in the presence of IAP antagonists and loss of RIP1-protected cells from CD95L/IAP antagonist–induced death. Cells resistant to CD95L/IAP antagonist treatment could be sensitized by short hairpin RNA–mediated knockdown of cellular FLICE-inhibitory protein (cFLIP). However, only cFLIPL and not cFLIPS interfered with RIP1 recruitment to the DISC and complex II and protected cells from death. These results demonstrate a fundamental role for RIP1 in CD95 signaling and provide support for a physiological role of caspase-independent death receptor–mediated cell death.  相似文献   

7.
Innate immunity represents the first line of defence against invading pathogens. It consists of an initial inflammatory response that recruits white blood cells to the site of infection in an effort to destroy and eliminate the pathogen. Some pathogens replicate within host cells, and cell death by apoptosis is an important effector mechanism to remove the replication niche for such microbes. However, some microbes have evolved evasive strategies to block apoptosis, and in these cases host cells may employ further countermeasures, including an inflammatory form of cell death know as necroptosis. This review aims to highlight the importance of the RIP kinase family in controlling these various defence strategies. RIP1 is initially discussed as a key component of death receptor signalling and in the context of dictating whether a cell triggers a pathway of pro-inflammatory gene expression or cell death by apoptosis. The molecular and functional interplay of RIP1 and RIP3 is described, especially with respect to mediating necroptosis and as key mediators of inflammation. The function of RIP2, with particular emphasis on its role in NOD signalling, is also explored. Special attention is given to emphasizing the physiological and pathophysiological contexts for these various functions of RIP kinases.  相似文献   

8.
Recently, receptor interacting protein (RIP)-1 has been recognized as an intracellular sensor at the crossroads of apoptosis, necroptosis, and cell survival. To reveal when this crucial molecule originated and how its function in integrating stress signals evolved, in this study we report on two RIP1 homologs in Chinese amphioxus (Branchiostoma belcheri tsingtauense), designated B. belcheri tsingtauense RIP1a and B. belcheri tsingtauense RIP1b. Phylogenetic analysis indicates that they are generated by domain recombination and lineage-specific duplication. Similar to human RIP1, both B. belcheri tsingtauense RIP1a and B. belcheri tsingtauense RIP1b activate NF-κB in a kinase activity-independent manner and induce apoptosis through the Fas-associated death domain protein-caspase cascade. Moreover, we found that the natural point mutation of Q to I in the RIP homotypic interaction motif of B. belcheri tsingtauense RIP1a provides negative feedback for amphioxus RIP1-mediated signaling. Thus, our study not only suggests that RIP1 has emerged as a molecular switch in triggering cell death or survival in a basal chordate, but also adds new insights into the regulation mechanisms of RIP1-related signaling, providing a novel perspective on human diseases mediated by RIP1.  相似文献   

9.
Tumor necrosis factor receptor (TNFR) signaling may result in survival, apoptosis or programmed necrosis. The latter is called necroptosis if the receptor-interacting protein 1 (RIP1) inhibitor necrostatin-1 (Nec-1) or genetic knockout of RIP3 prevents it. In the lethal mouse model of TNFα-mediated shock, addition of the pan-caspase inhibitor zVAD-fmk (zVAD) accelerates time to death. Here, we demonstrate that RIP3-deficient mice are protected markedly from TNFα-mediated shock in the presence and absence of caspase inhibition. We further show that the fusion protein TAT-crmA, previously demonstrated to inhibit apoptosis, also prevents necroptosis in L929, HT29 and FADD-deficient Jurkat cells. In contrast to RIP3-deficient mice, blocking necroptosis by Nec-1 or TAT-crmA did not protect from TNFα/zVAD-mediated shock, but further accelerated time to death. Even in the absence of caspase inhibition, Nec-1 application led to similar kinetics. Depletion of macrophages, natural killer (NK) cells, granulocytes or genetic deficiency for T lymphocytes did not influence this model. Because RIP3-deficient mice are known to be protected from cerulein-induced pancreatitis (CIP), we applied Nec-1 and TAT-crmA in this model and demonstrated the deterioration of pancreatic damage upon addition of these substances. These data highlight the importance of separating genetic RIP3 deficiency from RIP1 inhibition by Nec-1 application in vivo and challenge the current definition of necroptosis.  相似文献   

10.
Necroptosis不同于坏死和凋亡,具有坏死的细胞形态特点和自噬的活化,并且是主动耗能的,是被一系列信号传导通路所调控的细胞死亡机制。Necroptosis的发现和确认为细胞死亡的逆转和治疗开创了一个新的研究和应用途经。RIPl激酶是调控Necroptosis形成的关键酶,Necrostatins则是一类小分子化合物,它通过特异性地抑制细胞RIPl激酶而抑制Necroptosis的形成。  相似文献   

11.
Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation.  相似文献   

12.
《Translational oncology》2020,13(2):372-382
INTRODUCTION: The efficacy of chemotherapeutic agents in killing cancer cells is mainly attributed to the induction of apoptosis. However, the tremendous efforts on enhancing apoptosis-related mechanisms have only moderately improved lung cancer chemotherapy, suggesting that other cell death mechanisms such as necroptosis could be involved. In this study, we investigated the role of the necroptosis pathway in the responsiveness of nonsmall cell lung cancer (NSCLC) to chemotherapy. METHODS: In vitro cell culture and in vivo xenograft tumor therapy models and clinical sample studies are combined in studying the role of necroptosis in chemotherapy and mechanism of necroptosis suppression involving RIP3 expression regulation. RESULTS: While chemotherapeutic drugs were able to induce necroptotic cell death, this pathway was suppressed in lung cancer cells at least partly through downregulation of RIP3 expression. Ectopic RIP3 expression significantly sensitized lung cancer cells to the cytotoxicity of anticancer drugs such as cisplatin, etoposide, vincristine, and adriamycin. In addition, RIP3 suppression was associated with RIP3 promoter methylation, and demethylation partly restored RIP3 expression and increased chemotherapeutic-induced necroptotic cell death. In a xenograft tumor therapy model, ectopic RIP3 expression significantly sensitized anticancer activity of cisplatin in vivo. Furthermore, lower RIP3 expression was associated with worse chemotherapy response in NSCLC patients. CONCLUSION: Our results indicate that the necroptosis pathway is suppressed in lung cancer through RIP3 promoter methylation, and reactivating this pathway should be exploited for improving lung cancer chemotherapy.  相似文献   

13.
The mechanism of apoptosis has been extensively characterized over the past decade, but little is known about alternative forms of regulated cell death. Although stimulation of the Fas/TNFR receptor family triggers a canonical 'extrinsic' apoptosis pathway, we demonstrated that in the absence of intracellular apoptotic signaling it is capable of activating a common nonapoptotic death pathway, which we term necroptosis. We showed that necroptosis is characterized by necrotic cell death morphology and activation of autophagy. We identified a specific and potent small-molecule inhibitor of necroptosis, necrostatin-1, which blocks a critical step in necroptosis. We demonstrated that necroptosis contributes to delayed mouse ischemic brain injury in vivo through a mechanism distinct from that of apoptosis and offers a new therapeutic target for stroke with an extended window for neuroprotection. Our study identifies a previously undescribed basic cell-death pathway with potentially broad relevance to human pathologies.  相似文献   

14.
Caspase-dependent apoptosis is considered one of the most important cell death pathways. When the apoptotic process is blocked, a form of programmed necrosis called necroptosis occurs. Apoptosis and necroptosis may share some regulatory mechanisms. Recent studies indicated that receptor interacting protein 1 (RIP1), an Hsp90-associated kinase, is an important regulatory switch between apoptosis and necroptosis. In this study, we showed that oxygen-glucose deprivation (OGD) combined with a caspase inhibitor zVAD (OGD/zVAD)-induced RIP1 protein expression in a time-dependent manner. We found that geldanamycin (GA), a benzoquinone ansamycin, protected against neuronal injury induced by OGD/zVAD treatment in cultured primary neurons. More importantly, GA decreased RIP1 protein level in a time- and concentration-dependent manner. In this study, we found that GA also decreased the Hsp90 protein level, which caused instability of RIP1 protein, resulting in decreased RIP1 protein level but not RIP1 mRNA level after GA treatment. We concluded that the GA-mediated protection against OGD/zVAD-induced neuronal injury was associated with enhanced RIP1 protein instability by decreasing Hsp90 protein level. GA and its derivatives may be promising for the prevention of neuronal injury during ischemic injury.  相似文献   

15.
16.
RIP1 is a serine/threonine kinase, which is involved in apoptosis and necroptosis. In apoptosis, caspase-8 and FADD have an important role. On the other hand, RIP3 is a key molecule in necroptosis. Recently, we reported that eleostearic acid (ESA) elicits caspase-3- and PARP-1-independent cell death, although ESA-treated cells mediate typical apoptotic morphology such as chromatin condensation, plasma membrane blebbing and apoptotic body formation. The activation of caspases, Bax and PARP-1, the cleavage of AIF and the phosphorylation of histone H2AX, all of which are characteristics of typical apoptosis, do not occur in ESA-treated cells. However, the underlying mechanism remains unclear. To clarify the signaling pathways in ESA-mediated apoptosis, we investigated the functions of RIP1, MEK, ERK, as well as AIF. Using an extensive study based on molecular biology, we identified the alternative role of RIP1 in ESA-mediated apoptosis. ESA mediates RIP1-dependent apoptosis in a kinase independent manner. ESA activates serine/threonine phosphatases such as calcineurin, which induces RIP1 dephosphorylation, thereby ERK pathway is activated. Consequently, localization of AIF and ERK in the nucleus, ROS generation and ATP reduction in mitochondria are induced to disrupt mitochondrial cristae, which leads to cell death. Necrostatin (Nec)-1 blocked MEK/ERK phosphorylation and ESA-mediated apoptosis. Nec-1 inactive form (Nec1i) also impaired ESA-mediated apoptosis. Nec1 blocked the interaction of MEK with ERK upon ESA stimulation. Together, these findings provide a new finding that ERK and kinase-independent RIP1 proteins are implicated in atypical ESA-mediated apoptosis.  相似文献   

17.
Cell death is critical to the normal functioning of multi-cellular organisms, playing a central role in development, immunity, inflammation, and cancer progression. Two cell death mechanisms, apoptosis and necroptosis, are dependent on the formation of distinct multi-protein complexes including the DISC, Apoptosome, Piddosome and Necrosome following the induction of cell death by specific stimuli. The role of several of these key multi-protein signalling platforms, namely the DISC, TNFR1 complex I/II, the Necrosome and Ripoptosome, in mediating these pathways will be discussed, as well as the open questions and potential therapeutic benefits of understanding their underlying mechanisms.  相似文献   

18.
Caspase 8 plays a dual role in the survival of T lymphocytes. Although active caspase 8 mediates apoptosis upon death receptor signaling, the loss of caspase 8 activity leads to receptor-interacting protein (RIP)-1/RIP-3-dependent necrotic cell death (necroptosis) upon TCR activation. The anti-apoptotic protein c-FLIP (cellular caspase 8 (FLICE)-like inhibitory protein) suppresses death receptor-induced caspase 8 activation. Moreover, recent findings suggest that c-FLIP is also involved in inhibiting necroptosis and autophagy. It remains unclear whether c-FLIP protects primary T lymphocytes from necroptosis or regulates the threshold at which autophagy occurs. Here, we used a c-FLIP isoform-specific conditional deletion model to show that c-FLIPL-deficient T cells underwent RIP-1-dependent necroptosis upon TCR stimulation. Interestingly, although previous studies have only described necroptosis in the absence of caspase 8 activity, we found that pro-apoptotic caspase 8 activity and apoptosis were also enhanced in c-FLIPL-deficient T lymphocytes. Furthermore, c-FLIPL-deficient T cells exhibited enhanced autophagy, which served a cytoprotective function. Together, these findings indicate that c-FLIPL plays an important antinecroptotic role and is a key regulator of apoptosis, autophagy, and necroptosis in T lymphocytes.  相似文献   

19.
Necroptosis is an alternate programmed cell death pathway that is unleashed by caspase-8 compromise and mediated by receptor-interacting protein kinase 3 (RIP3). Murine cytomegalovirus (CMV) and herpes simplex virus (HSV) encode caspase-8 inhibitors that prevent apoptosis together with competitors of RIP homotypic interaction motif (RHIM)-dependent signal transduction to interrupt the necroptosis. Here, we show that pro-necrotic murine CMV M45 mutant virus drives virus-induced necroptosis during nonproductive infection of RIP3-expressing human fibroblasts, whereas WT virus does not. Thus, M45-encoded RHIM competitor, viral inhibitor of RIP activation, sustains viability of human cells like it is known to function in infected mouse cells. Importantly, human CMV is shown to block necroptosis induced by either TNF or M45 mutant murine CMV in RIP3-expressing human cells. Human CMV blocks TNF-induced necroptosis after RIP3 activation and phosphorylation of the mixed lineage kinase domain-like (MLKL) pseudokinase. An early, IE1-regulated viral gene product acts on a necroptosis step that follows MLKL phosphorylation prior to membrane leakage. This suppression strategy is distinct from RHIM signaling competition by murine CMV or HSV and interrupts an execution process that has not yet been fully elaborated.  相似文献   

20.
The receptor-interacting protein kinase 3 (RIP3) associates with RIP1 in a necrosome complex that can induce necroptosis, apoptosis, or cell proliferation. We analyzed the expression of RIP1 and RIP3 in CD34+ leukemia cells from a cohort of patients with acute myeloid leukemia (AML) and CD34+ cells from healthy donors. RIP3 expression was significantly reduced in most AML samples, whereas the expression of RIP1 did not differ significantly. When re-expressed in the mouse DA1-3b leukemia cell line, RIP3 induced apoptosis and necroptosis in the presence of caspase inhibitors. Transfection of RIP3 in the WEHI-3b leukemia cell line or in the mouse embryonic fibroblasts also resulted in increased cell death. Surprisingly, re-expression of a RIP3 mutant with an inactive kinase domain (RIP3-kinase dead (RIP3-KD)) induced significantly more and earlier apoptosis than wild-type RIP3 (RIP3-WT), indicating that the RIP3 kinase domain is an essential regulator of apoptosis/necroptosis in leukemia cells. The induced in vivo expression of RIP3-KD but not RIP3-WT prolonged the survival of mice injected with leukemia cells. The expression of RIP3-KD induced p65/RelA nuclear factor-κB (NF-κB) subunit caspase-dependent cleavage, and a non-cleavable p65/RelA D361E mutant rescued these cells from apoptosis. p65/RelA cleavage appears to be at least partially mediated by caspase-6. These data indicate that RIP3 silencing in leukemia cells results in suppression of the complex regulation of the apoptosis/necroptosis switch and NF-κB activity.Impairment in cell death pathways represents a general characteristic of most cancer cells. Cells can die through several mechanisms; two such cell death pathways include apoptosis and necrosis, which display distinct characteristics.1 Necrosis can occur in either an incidental or intentional manner as a result of defined signals, and the term necroptosis has been proposed to describe this programmed necrosis.2 Activation of the receptor-interacting protein kinase 1 (RIP1) and 3 (RIP3) proteins in the necrosome complex can induce apoptosis, necroptosis, or cell proliferation after the activation of death receptors, including TNFR1, TRAIL, and FAS.3, 4 RIP1 and RIP3 are serine threonine kinases with strong homology.5 Both proteins are composed of a kinase domain at the N-terminus and a RIP homotypic interaction motif (RHIM) at the C-terminus of RIP3. The RIP1/RIP3 complex can induce necroptosis initiated by cell death receptors of the tumor necrosis factor family. RIP3 binds to RIP1 via their respective RHIM domains, and these proteins form a filamentous structure with characteristics similar to β-amyloids and can cross phosphorylate each other and several downstream targets involved in necroptosis, apoptosis, or nuclear factor-κB (NF-κB) activation.6The role of RIP3 in necroptosis and inflammation has been extensively studied, but its role in cancer remains poorly understood. A previous study in chronic lymphocytic leukemia (CLL) showed that malignant lymphoid cells were resistant to tumor necrosis factor-α (TNFα+Z-VAD-induced (carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone) necroptosis and expressed reduced levels of RIP3 and cylindromatosis (CYLD), which regulates RIP1.7 Another study on childhood acute lymphoblastic leukemia reported that RIP1 was necessary to mediate the inhibitor of apoptosis protein-mediated sensitization of blast cells to chemotherapy.8 Autocrine TNFα loops that activate NF-κB through RIP1 have also been described in various cancer cell lines.9, 10Here we report that the expression of RIP3 was decreased in the majority of acute myeloid leukemia (AML) patients examined, whereas the expression of RIP1 remained unaffected. The expression of a RIP3 mutant with an inactivated kinase domain (RIP3-kinase dead (RIP3-KD)) in myeloid cell lines resulted in massive and early apoptosis and the caspase-mediated cleavage of p65/RkelA at a caspase-6 putative consensus site. Moreover, only RIP3-KD prolonged the survival of leukemic mice. Our results show that RIP3 activity regulates the apoptosis/necroptosis switch via its kinase activity in leukemia cells, and that other functions of RIP3 that are independent of its kinase domain modulate apoptosis and NF-κB activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号