首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Highly Expressed in Cancer protein 1 (Hec1) is a constituent of the Ndc80 complex, a kinetochore component that has been shown to have a fundamental role in stable kinetochore-microtubule attachment, chromosome alignment and spindle checkpoint activation at mitosis. HEC1 RNA is found up-regulated in several cancer cells, suggesting a role for HEC1 deregulation in cancer. In light of this, we have investigated the consequences of experimentally-driven Hec1 expression on mitosis and chromosome segregation in an inducible expression system from human cells.

Methodology/Principal Findings

Overexpression of Hec1 could never be obtained in HeLa clones inducibly expressing C-terminally tagged Hec1 or untagged Hec1, suggesting that Hec1 cellular levels are tightly controlled. On the contrary, a chimeric protein with an EGFP tag fused to the Hec1 N-terminus accumulated in cells and disrupted mitotic division. EGFP- Hec1 cells underwent altered chromosome segregation within multipolar spindles that originated from centriole splitting. We found that EGFP-Hec1 assembled a mutant Ndc80 complex that was unable to rescue the mitotic phenotypes of Hec1 depletion. Kinetochores harboring EGFP-Hec1 formed persisting lateral microtubule-kinetochore interactions that recruited the plus-end depolymerase MCAK and the microtubule stabilizing protein HURP on K-fibers. In these conditions the plus-end kinesin CENP-E was preferentially retained at kinetochores. RNAi-mediated CENP-E depletion further demonstrated that CENP-E function was required for multipolar spindle formation in EGFP-Hec1 expressing cells.

Conclusions/Significance

Our study suggests that modifications on Hec1 N-terminal tail can alter kinetochore-microtubule attachment stability and influence Ndc80 complex function independently from the intracellular levels of the protein. N-terminally modified Hec1 promotes spindle pole fragmentation by CENP-E-mediated plus-end directed kinetochore pulling forces that disrupt the fine balance of kinetochore- and centrosome-associated forces regulating spindle bipolarity. Overall, our findings support a model in which centrosome integrity is influenced by the pathways regulating kinetochore-microtubule attachment stability.  相似文献   

2.
Objective: Chromosome segregation during mitosis requires a physically large proteinaceous structure called the kinetochore to generate attachments between chromosomal DNA and spindle microtubules. It is essential for kinetochore components to be carefully regulated to guarantee successful cell division. Depletion, mutation or dysregulation of kinetochore proteins results in mitotic arrest and/or cell death. HEC1 (high expression in cancer) has been reported to be a kinetochore protein, depletion of which, by RNA interference, results in catastrophic mitotic exit. Materials and methods and results: To investigate how HEC1 protein is controlled post‐translation, we analysed the role of anaphase‐promoting complex/cyclosome (APC/C)‐Cdh1 in degradation of HEC1 protein. In this study, we show that HEC1 is an unstable protein and can be targeted by endogenous ubiquitin‐proteasome system in HEK293T cells. Results of RNA interference and in vivo ubiquitination assay indicated that HEC1 could be ubiquitinated and degraded by APC/C‐hCdh1 E3 ligase. The evolutionally conserved D‐box at the C‐terminus functioned as the degron of HEC1, destruction of which resulted in resistance to degradation mediated by APC/C‐Cdh1. Overexpression of non‐degradable HEC1 (D‐box destroyed) induced accumulation of cyclin B protein in vivo and triggered mitotic arrest. Conclusion: APC/C‐Cdh1 controls stability of HEC1, ensuring normal cell cycle progression.  相似文献   

3.
Previous studies have stipulated Hec1 as a conserved kinetochore component critical for mitotic control in part by directly binding to kinetochore fibers of the mitotic spindle and by recruiting spindle assembly checkpoint proteins Mad1 and Mad2. Hec1 has also been reported to localize to centrosomes, but its function there has yet to be elucidated. Here, we show that Hec1 specifically colocalizes with Hice1, a previously characterized centrosomal microtubule-binding protein, at the spindle pole region during mitosis. In addition, the C-terminal region of Hec1 directly binds to the coiled-coil domain 1 of Hice1. Depletion of Hice1 by small interfering RNA (siRNA) reduced levels of Hec1 in the cell, preferentially at centrosomes and spindle pole vicinity. Reduction of de novo microtubule nucleation from mitotic centrosomes can be observed in cells treated with Hec1 or Hice1 siRNA. Consistently, neutralization of Hec1 or Hice1 by specific antibodies impaired microtubule aster formation from purified mitotic centrosomes in vitro. Last, disruption of the Hec1/Hice1 interaction by overexpressing Hice1ΔCoil1, a mutant defective in Hec1 interaction, elicited abnormal spindle morphology often detected in Hec1 and Hice1 deficient cells. Together, the results suggest that Hec1, through cooperation with Hice1, contributes to centrosome-directed microtubule growth to facilitate establishing a proper mitotic spindle.  相似文献   

4.
Anti-integrin-linked kinase (ILK) therapies result in aberrant mitosis including altered mitotic spindle organization, centrosome declustering and mitotic arrest. In contrast to cells that expressed the retinoblastoma tumor suppressor protein Rb, we have shown that in retinoblastoma cell lines that do not express Rb, anti-ILK therapies induced aberrant mitosis that led to the accumulation of temporarily viable multinucleated cells. The present work was undertaken to: 1) determine the ultimate fate of cells that had survived anti-ILK therapies and 2) determine whether or not Rb expression altered the outcome of these cells. Our data indicate that ILK, a chemotherapy drug target is expressed in both well-differentiated, Rb-negative and relatively undifferentiated, Rb-positive retinoblastoma tissue. We show that small molecule targeting of ILK in Rb-positive and Rb-deficient cancer cells results in increased centrosomal declustering, aberrant mitotic spindle formation and multinucleation. However, anti-ILK therapies in vitro have different outcomes in retinoblastoma and glioblastoma cell lines that depend on Rb expression. TUNEL labeling and propidium iodide FACS analysis indicate that Rb-positive cells exposed to anti-ILK therapies are more susceptible to apoptosis and senescence than their Rb-deficient counterparts wherein aberrant mitosis induced by anti-ILK therapies exhibit mitotic arrest instead. These studies are the first to show a role for ILK in chemotherapy-induced senescence in Rb-positive cancer lines. Taken together these results indicate that the oncosuppressive outcomes for anti-ILK therapies in vitro, depend on the expression of the tumor suppressor Rb, a known G1 checkpoint and senescence regulator.  相似文献   

5.
Most cancer cells show chromosomal instability, a condition where chromosome missegregation occurs frequently. We found that chromosome oscillation, an iterative chromosome motion during metaphase, is attenuated in cancer cell lines. We also found that metaphase phosphorylation of Hec1 at serine 55, which is mainly dependent on Aurora A on the spindle, is reduced in cancer cell lines. The Aurora A–dependent Hec1-S55 phosphorylation level was regulated by the chromosome oscillation amplitude and vice versa: Hec1-S55 and -S69 phosphorylation by Aurora A is required for efficient chromosome oscillation. Furthermore, enhancement of chromosome oscillation reduced the number of erroneous kinetochore–microtubule attachments and chromosome missegregation, whereas inhibition of Aurora A during metaphase increased such errors. We propose that Aurora A–mediated metaphase Hec1-S55 phosphorylation through chromosome oscillation, together with Hec1-S69 phosphorylation, ensures mitotic fidelity by eliminating erroneous kinetochore–microtubule attachments. Attenuated chromosome oscillation and the resulting reduced Hec1-S55 phosphorylation may be a cause of CIN in cancer cell lines.  相似文献   

6.
The retinoblastoma protein (pRb) pathway is frequently altered in breast cancer cells. pRb is involved in the regulation of cell proliferation and cell death. The breast cancer cell line L56Br-C1 does not express pRb and is extremely sensitive to treatment with the polyamine analogue N 1,N 11-diethylnorspermine (DENSPM) which causes apoptosis. Polyamines are essential for the regulation of cell proliferation, cell differentiation and cell death. DENSPM depletes cells of polyamines, e.g., by inducing the activity of the polyamine catabolic enzyme spermidine/spermine N 1-acetyltransferase (SSAT). In this study, L56Br-C1 cells were transfected with human pRb–cDNA. Overexpression of pRb inhibited DENSPM-induced cell death and DENSPM-induced SSAT activity. This suggests that the pRb protein level is a promising marker for polyamine depletion sensitivity and that there is a connection between pRb and the regulation of SSAT activity. We also show that SSAT protein levels and SSAT activity do not always correlate, suggesting that there is an unknown regulation of SSAT.  相似文献   

7.
Verification that cell lines used for cancer research are derived from malignant cells in primary tumors is imperative to avoid invalidation of study results. Retinoblastoma is a childhood ocular tumor that develops from loss of functional retinoblastoma protein (pRb) as a result of genetic or epigenetic changes that affect both alleles of the RB1 gene. These patients contain unique identifiable genetic signatures specifically present in malignant cells. Primary cultures derived from retinoblastoma tumors can be established as non-adherent tumorspheres when grown in defined media or as attached monolayers when grown in serum-containing media. While the RB1 genotypes of tumorspheres match those of the primary tumor, adherent cultures have the germline RB1 genotype. Tumorspheres derived from pRb-negative tumors do not express pRb and express the neuroendocrine tumor markers synaptophysin and microtubule-associated protein 2 (MAP2). Adherent cells are synaptophysin-negative and express pRb, the epithelial cell marker cytokeratin that is expressed in the retinal pigmented epithelium and the vascular endothelial cell marker CD34. While tumorspheres are of malignant origin, our results cast doubt on the assumption that adherent tumor-derived cultures are always valid in vitro models of malignant cells and emphasize the need for validation of primary tumor cultures.  相似文献   

8.
CENP-A is an evolutionarily conserved, centromere-specific variant of histone H3 that is thought to play a central role in directing kinetochore assembly and in centromere function. Here, we have analyzed the consequences of disrupting the CENP-A gene in the chicken DT40 cell line. In CENP-A-depleted cells, kinetochore protein assembly is impaired, as indicated by mislocalization of the inner kinetochore proteins CENP-I, CENP-H, and CENP-C as well as the outer components Nuf2/Hec1, Mad2, and CENP-E. However, BubR1 and the inner centromere protein INCENP are efficiently recruited to kinetochores. Following CENP-A depletion, chromosomes are deficient in proper congression on the mitotic spindle and there is a transient delay in prometaphase. CENP-A-depleted cells further proceed through anaphase and cytokinesis with unequal chromosome segregation, suggesting that some kinetochore function remains following substantial depletion of CENP-A. We furthermore demonstrate that CENP-A-depleted cells exhibit a specific defect in maintaining kinetochore localization of the checkpoint protein BubR1 under conditions of checkpoint activation. Our data thus point to a specific role for CENP-A in assembly of kinetochores competent in the maintenance of mitotic checkpoint signaling.  相似文献   

9.
The retinoblastoma (Rb) tumour suppressor promotes cell cycle exit, terminal differentiation and survival during normal development and is functionally inactivated in most human cancers. We have identified a novel myeloid-specific form of retinoblastoma protein (pRb), termed deltaRb-p70, that exists in vivo as an N-terminally truncated form of full-length pRb. DeltaRb-p70 appears to be the product of alternative translation and is expressed in primary myeloid cells in fetal liver, bone marrow and spleen. It is also expressed in the human myelomonocytic cell line U937 and is down-regulated as U937s are induced to differentiate. We have also detected deltaRb-p70 expression in primary human breast tumours and we have determined that deltaRb-p70 is specifically expressed in tumour-associated macrophages. These data identify a novel mechanism for regulating pRb expression that is unique to the myeloid system.  相似文献   

10.
Dickkopf‐related protein 3 (DKK3) is an antagonist of Wnt ligand activity. Reduced DKK3 expression has been reported in various types of cancers, but its functions and related molecular mechanisms in breast tumorigenesis remain unclear. We examined the expression and promoter methylation of DKK3 in 10 breast cancer cell lines, 96 primary breast tumours, 43 paired surgical margin tissues and 16 normal breast tissues. DKK3 was frequently silenced in breast cell lines (5/10) by promoter methylation, compared with human normal mammary epithelial cells and tissues. DKK3 methylation was detected in 78% of breast tumour samples, whereas only rarely methylated in normal breast and surgical margin tissues, suggesting tumour‐specific methylation of DKK3 in breast cancer. Ectopic expression of DKK3 suppressed cell colony formation through inducing G0/G1 cell cycle arrest and apoptosis of breast tumour cells. DKK3 also induced changes of cell morphology, and inhibited breast tumour cell migration through reversing epithelial‐mesenchymal transition (EMT) and down‐regulating stem cell markers. DKK3 inhibited canonical Wnt/β‐catenin signalling through mediating β‐catenin translocation from nucleus to cytoplasm and membrane, along with reduced active‐β‐catenin, further activating non‐canonical JNK signalling. Thus, our findings demonstrate that DKK3 could function as a tumour suppressor through inducing apoptosis and regulating Wnt signalling during breast tumorigenesis.  相似文献   

11.
The anti‐resorptive agent zoledronic acid inhibits key enzymes in the mevalonate pathway, disrupting post‐translational modification and thereby correct protein localization and function. Inhibition of prenylation may also be responsible for the reported anti‐tumour effects of zoledronic acid, but the specific molecular targets have not been identified. Cenp‐F/mitosin, a kinetochore‐associated protein involved in the correct separation of chromosomes during mitosis, has been shown to undergo post‐translational prenylation and may therefore be a novel target contributing to the anti‐tumour effects of zoledronic acid. We investigated whether zoledronic acid causes loss of Cenp‐F from the kinetochore in breast cancer cells, to determine if the reported anti‐tumour effects may be mediated by impairing correct chromosome separation. MDA‐MB‐436, MDA‐MB‐231 and MCF‐7 breast cancer cells and MCF‐10A non‐malignant breast epithelial cells were treated with zoledronic acid in vitro, and the effect on Cenp‐F localization was analysed by immunoflourescence microscopy. Zoledronic acid caused loss of Cenp‐F from the kinetochore, accompanied by an increase in the number of cells in pro‐, /prometa‐ and metaphase in all of the cancer cell lines. There was also a significant increase in the number of lagging chromosomes in mitotic cells. The effects of zoledronic acid could be reversed by inclusion of an intermediary of the mevalonate pathway, showing that the loss of Cenp‐F from the kinetochore was caused by the inhibition of farnesylation. In contrast, no effect was seen on Cenp‐F in non‐malignant MCF‐10A cells. This is the first report showing a specific effect of zoledronic acid on a protein involved in the regulation of chromosome segregation, identifying Cenp‐F as a potential new molecular target for NBPs in tumour cells.  相似文献   

12.
The retinoblastoma tumor suppressor protein (pRb) is involved in mitotic exit, promoting the arrest of myoblasts, and myogenic differentiation. However, it is unclear how permanent cell cycle exit is maintained in differentiated muscle. Using RNA interference, expression profiling, and chromatin immunoprecipitations, we show that pRb is essential for cell cycle exit and the differentiation of myoblasts and is also uniquely required to maintain this arrest in myotubes. Remarkably, we also uncover a function for the pRb-related proteins p107 and p130 as enforcers of a G2/M phase checkpoint that prevents progression into mitosis in cells that have lost pRb. We further demonstrate that pRb effects permanent cell cycle exit in part by maintaining trimethylation of histone H3 lysine 27 (H3K27) on cell cycle genes. H3K27 trimethylation silences other genes, including Cyclin D1, in a pRb-independent but polycomb-dependent manner. Thus, our data distinguish two distinct chromatin-based regulatory mechanisms that lead to terminal differentiation.  相似文献   

13.
Budding yeast Sgt1 is required for kinetochore assembly, and its homologues have a role in cAMP signalling in fungi and pathogen resistance in plants. The function of mammalian Sgt1 is unknown. We report that RNA interference-mediated depletion of Sgt1 from HeLa cells causes dramatic alterations of the mitotic spindle and problems in chromosome alignment. Cells lacking Sgt1 undergo a mitotic delay due to activation of the spindle checkpoint. The checkpoint response, however, is significantly weakened in Sgt1-depleted cells, and this correlates with a dramatic reduction in kinetochore levels of Mad1, Mad2 and BubR1. These effects are explained by a problem in kinetochore assembly that prevents the localization of Hec1, CENP-E, CENP-F, CENP-I, but not CENP-C, to mitotic kinetochores. Our studies implicate Sgt1 as an essential protein and a critical assembly factor for the mammalian kinetochore, and lend credit to the hypothesis of a kinetochore assembly pathway that is conserved from yeast to man.  相似文献   

14.

Background  

Polyamines and ornithine decarboxylase (ODC) are essential for cell proliferation. DL-α-difluoromethylornithine (DFMO), a synthetic inhibitor of ODC, induces G1 arrest through dephosphorylation of retinoblastoma protein (pRb). The effect of DFMO on cell growth of pRb deficient cells is not known. We examined the effects of DFMO on pRb deficient human retinoblastoma Y79 cell proliferation and its molecular mechanism.  相似文献   

15.
The spindle assemble checkpoint (SAC) is critical for accurate chromosome segregation. Hec1 contributes to chromosome segregation in part by mediating SAC signaling and chromosome alignment. However, the molecular mechanism by which Hec1 modulates checkpoint signaling and alignment remains poorly understood. We found that Hec1 serine 165 (S165) is preferentially phosphorylated at kinetochores. Phosphorylated Hec1 serine 165 (pS165) specifically localized to kinetochores of misaligned chromosomes, showing a spatiotemporal distribution characteristic of SAC molecules. Expressing an RNA interference (RNAi)-resistant S165A mutant in Hec1-depleted cells permitted normal progression to metaphase, but accelerated the metaphase-to-anaphase transition. The S165A cells were defective in Mad1 and Mad2 localization to kinetochores, regardless of attachment status. These cells often entered anaphase with lagging chromosomes and elicited increased segregation errors and cell death. In contrast, expressing S165E mutant in Hec1-depleted cells triggered defective chromosome alignment and severe mitotic arrest associated with increased Mad1/Mad2 signals at prometaphase kinetochores. A small portion of S165E cells eventually bypassed the SAC but showed severe segregation errors. Nek2 is the primary kinase responsible for kinetochore pS165, while PP1 phosphatase may dephosphorylate pS165 during SAC silencing. Taken together, these results suggest that modifications of Hec1 S165 serve as an important mechanism in modulating SAC signaling and chromosome alignment.  相似文献   

16.
PELP1 (proline-, glutamic acid-, and leucine-rich protein-1 (also referred to as MNAR, or modulator of nongenomic activity of estrogen receptor)), a recently identified novel coactivator of estrogen receptors, is widely expressed in a variety of 17 beta-estradiol (E2)-responsive reproductive tissues and is developmentally regulated in mammary glands. pRb (retinoblastoma protein), a cell cycle switch protein, plays a fundamental role in the proliferation, development, and differentiation of eukaryotic cells. To study the putative function of PELP1, we established stable MCF-7 breast cancer cell lines overexpressing PELP1. PELP1 overexpression hypersensitized breast cancer cells to E2 signaling, enhanced progression of breast cancer cells to S phase, and led to persistent hyperphosphorylation of pRb in an E2-dependent manner. Using phosphorylation site-specific pRb antibodies, we identified Ser-807/Ser-811 of pRb as a potential target site of PELP1. Interestingly, PELP1 was discovered to be physiologically associated with pRb and interacted via its C-terminal pocket domain, and PELP1/pRb interaction could be modulated by antiestrogen agents. Using mutant pRb cells, we demonstrated an essential role for PELP1/pRb interactions in the maximal coactivation functions of PELP1 using cyclin D1 as one of the targets. Taken together, these findings suggest that PELP1, a steroid coactivator, plays a permissive role in E2-mediated cell cycle progression, presumably via its regulatory interaction with the pRb pathway.  相似文献   

17.
Objective: We investigated subcutaneous adipose tissue expression of FOXC2 and selected genes involved in brown adipogenesis in adult human subjects in whom we have previously identified a reduced potential of precursor cell commitment to adipose‐lineage differentiation in relation to insulin resistance. Research Methods and Procedure: Gene expression was studied using quantitative real time polymerase chain reaction. The relation between the expression of brown adipogenic genes and the genes involved in progenitor cell commitment, adipose cell size, and insulin sensitivity in vivo was analyzed. Results: The expression of FOXC2, MASK, MAP3K5, retinoblastoma protein (pRb), peroxisome proliferator‐activated protein gamma (PPARγ), and retinoid X receptor gamma (RXRγ) was decreased in the insulin‐resistant compared with insulin‐sensitive subjects, whereas PPARγ‐2 and CCAAT/enhancer binding protein alpha (C/EBPα) showed no differential expression. The FOXC2 expression correlated with that of Notch and Wnt signaling genes, as well as of the genes studied participating in brown adipogenesis, including MASK, MAP3K5, PPARγ, pRb, RXRγ, and PGC‐1. A second‐level correlation between PPARγ and UCP‐1 was also significant. In addition, the expression of MASK, MAP3K5, pRb, RXRγ, and PGC‐1 inversely correlated with adipose cell mass and also correlated with the glucose disposal rate in vivo. Discussion: Our results suggest that a reduced brown adipose phenotype is associated with insulin resistance and that a basal brown adipose phenotype may be important for maintaining normal insulin sensitivity.  相似文献   

18.
Cdt1, a protein critical for replication origin licensing in G1 phase, is degraded during S phase but re-accumulates in G2 phase. We now demonstrate that human Cdt1 has a separable essential mitotic function. Cdt1 localizes to kinetochores during mitosis through interaction with the Hec1 component of the Ndc80 complex. G2-specific depletion of Cdt1 arrests cells in late prometaphase owing to abnormally unstable kinetochore-microtubule (kMT) attachments and Mad1-dependent spindle-assembly-checkpoint activity. Cdt1 binds a unique loop extending from the rod domain of Hec1 that we show is also required for kMT attachment. Mutation of the loop domain prevents Cdt1 kinetochore localization and arrests cells in prometaphase. Super-resolution fluorescence microscopy indicates that Cdt1 binding to the Hec1 loop domain promotes a microtubule-dependent conformational change in the Ndc80 complex in vivo. These results support the conclusion that Cdt1 binding to Hec1 is essential for an extended Ndc80 configuration and stable kMT attachment.  相似文献   

19.
Proper kinetochore function is essential for the accurate segregation of chromosomes during mitosis. Kinetochores provide the attachment sites for spindle microtubules and are required for the alignment of chromosomes at the metaphase plate (chromosome congression). Components of the conserved NDC80 complex are required for chromosome congression, and their disruption results in mitotic arrest accompanied by multiple spindle aberrations. To better understand the function of the NDC80 complex, we have identified two novel subunits of the human NDC80 complex, termed human SPC25 (hSPC25) and human SPC24 (hSPC24), using an immunoaffinity approach. hSPC25 interacted with HEC1 (human homolog of yeast Ndc80) throughout the cell cycle and localized to kinetochores during mitosis. RNA interference-mediated depletion of hSPC25 in HeLa cells caused aberrant mitosis, followed by cell death, a phenotype similar to that of cells depleted of HEC1. Loss of hSPC25 also caused multiple spindle aberrations, including elongated, multipolar, and fractured spindles. In the absence of hSPC25, MAD1 and HEC1 failed to localize to kinetochores during mitosis, whereas the kinetochore localization of BUB1 and BUBR1 was largely unaffected. Interestingly, the kinetochore localization of MAD1 in cells with a compromised NDC80 function was restored upon microtubule depolymerization. Thus, hSPC25 is an essential kinetochore component that plays a significant role in proper execution of mitotic events.  相似文献   

20.
A major goal in the study of vertebrate mitosis is to identify proteins that create the kinetochore-microtubule attachment site. Attachment sites within the kinetochore outer plate generate microtubule dependent forces for chromosome movement and regulate spindle checkpoint protein assembly at the kinetochore. The Ndc80 complex, comprised of Ndc80 (Hec1), Nuf2, Spc24, and Spc25, is essential for metaphase chromosome alignment and anaphase chromosome segregation. It has also been suggested to have roles in kinetochore microtubule formation, production of kinetochore tension, and the spindle checkpoint. Here we show that Nuf2 and Hec1 localize throughout the outer plate, and not the corona, of the vertebrate kinetochore. They are part of a stable "core" region whose assembly dynamics are distinct from other outer domain spindle checkpoint and motor proteins. Furthermore, Nuf2 and Hec1 are required for formation and/or maintenance of the outer plate structure itself. Fluorescence light microscopy, live cell imaging, and electron microscopy provide quantitative data demonstrating that Nuf2 and Hec1 are essential for normal kinetochore microtubule attachment. Our results indicate that Nuf2 and Hec1 are required for organization of stable microtubule plus-end binding sites in the outer plate that are needed for the sustained poleward forces required for biorientation at kinetochores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号