首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, considerable attention has focused on the clinical development of novel anticancer agents which are intended to induce differentiation (i.e., protein kinase C activators and histone deacetylase inhibitors) or to inhibit cyclin-dependent kinases (CDKs) (i.e., flavopiridol and UCN-01). Because the differentiation process requires cell cycle arrest (e.g., in G(1)), the possibility arises that CDK inhibitors might potentiate the maturation response of neoplastic cells to various differentiation-inducing agents. However, recent findings indicate that contrary to expectations, pharmacologic CDK inhibitors fail to promote differentiation, at least in human leukemia cells; instead, they antagonize the maturation process and induce dysregulation of various cell cycle and apoptotic regulatory proteins that culminate in mitochondrial injury and apoptosis. A brief summary of the events that might contribute to these phenomena in human leukemia cells follows below. A better understanding of interactions between putative differentiation-inducers and cell cycle inhibitors may provide the foundation for the future development of novel chemotherapeutic strategies in hematopoietic and possibly non-hematopoietic malignancies.  相似文献   

2.
Mutations of the retinoblastoma tumor suppressor, pRb, or its cyclin-cyclin-dependent kinase (CDK) regulatory kinases or CDK inhibitors, allows unrestrained E2F activity, leading to unregulated cell cycle progression. However, overexpression of E2F-1 also sensitizes cells to apoptosis, suggesting that targeting this pathway may be of therapeutic benefit. Enforced expression of E2F-1 in interleukin-3-dependent myeloid cells led to preferential sensitivity to the topoisomerase II inhibitor, etoposide, which was independent of p53 accumulation. Pretreatment of the E2F-1-expressing cells with ICRF-193, a second topoisomerase II inhibitor that does not cause DNA damage, protected these cells against etoposide-induced apoptosis. However, ICRF-193 cooperated with other DNA-damaging agents to induce apoptosis. Enforced expression of E2F-1 led to accumulation of p53 protein. An E2F-1 mutant that is defective in inducing cell cycle progression also induced p53, suggesting that p53 was responding directly to E2F, and not to secondary events caused by inappropriate cell cycle progression (i.e., DNA damage). Thus, topoisomerase II inhibition and DNA damage cooperate to selectively induce apoptosis in cells that have mutations in the pRb pathway.  相似文献   

3.
Roscovitine and purvalanol are novel cyclin-dependent kinase (CDK) inhibitors that prevent cell proliferation and induce apoptotic cell death in various cancer cell lines. Although a number of studies have demonstrated the potential apoptotic role of roscovitine, there is limited data about the therapeutic efficiency of purvalanol on cancer cells. The natural polyamines (PAs) putrescine, spermidine, and spermine have essential roles in the regulation of cell differentiation, growth, and proliferation, and increased levels of these compounds have been associated with cancer progression. Recently, depletion of intracellular PA levels because of modulation of PA catabolic enzymes was shown to be an indicator of the efficacy of chemotherapeutic agents. In this study, our aim was to investigate the potential role of PA catabolic enzymes in CDK inhibitor-induced apoptosis in HCT 116 colon carcinoma cells. Exposure of cells to roscovitine or purvalanol decreased cell viability in a dose- and time-dependent manner. The selected concentrations of roscovitine and purvalanol inhibited cell viability by 50 % compared with control cells and induced apoptosis by activating the mitochondria-mediated pathway in a caspase-dependent manner. However, the apoptotic effect of purvalanol was stronger than that of roscovitine in HCT 116 cells. In addition, we found that CDK inhibitors decreased PA levels and significantly upregulated expression of key PA catabolic enzymes such as polyamine oxidase (PAO) and spermine oxidase (SMO). MDL-72,527, a specific inhibitor of PAO and SMO, decreased apoptotic potential of CDK inhibitors on HCT 116 cells. Moreover, transient silencing of PAO was also reduced prevented CDK inhibitor-induced apoptosis in HCT 116 cells. We conclude that the PA catabolic pathway, especially PAO, is a critical target for understanding the molecular mechanism of CDK inhibitor-induced apoptosis.  相似文献   

4.
5.
MicroRNAs have been extensively studied as regulators of hematopoiesis and leukemogenesis. We identified miR-638 as a novel regulator in myeloid differentiation and proliferation of leukemic cells. We found that miR-638 was developmentally up-regulated in cells of myeloid but not lymphoid lineage. Furthermore, significant miR-638 down-regulation was observed in primary acute myeloid leukemia (AML) blasts, whereas miR-638 expression was dramatically up-regulated in primary AML blasts and leukemic cell lines undergoing forced myeloid differentiation. These observations suggest that miR-638 might play a role in myeloid differentiation, and its dysregulation may contribute to leukemogenesis. Indeed, ectopic expression of miR-638 promoted phorbol 12-myristate 13-acetate- or all-trans-retinoic acid-induced differentiation of leukemic cell lines and primary AML blasts, whereas miR-638 inhibition caused an opposite phenotype. Consistently, miR-638 overexpression induced G1 cell cycle arrest and reduced colony formation in soft agar. Cyclin-dependent kinase 2 (CDK2) was found to be a target gene of miR-638. CDK2 inhibition phenotypically mimicked the overexpression of miR-638. Moreover, forced expression of CDK2 restored the proliferation and the colony-forming ability inhibited by miR-638. Our data suggest that miR-638 regulates proliferation and myeloid differentiation by targeting CDK2 and may serve as a novel target for leukemia therapy or marker for AML diagnosis and prognosis.  相似文献   

6.
Recently, a novel approach has been used in the treatment of leukemia: induction of the leukemic cells to undergo terminal differentiation. Based on its in vitro ability to induce differentiation in several myeloid leukemic cell lines, retinoic acid (RA) has been applied clinically in cases of myelodysplastic syndromes and acute myeloid and promyelocytic leukemia. In the present study we have determined in detail the ability of RA to induce expression of granulocytic functions in a human promyelocytic leukemia cell line (HL-60) and compared it with that of dimethylsulfoxide (DMSO). Several granulocytic characteristics (phagocytosis, surface adherence and generation of free radicals in response to phorbol-ester) were induced to the same degree by both agents. Other normal neutrophil functions, including lysozyme accumulation, spontaneous migration, chemotactic activity toward zymosan-activated serum (containing C5a), the peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) and spontaneous motility in semi-solid medium were induced by DMSO, but they were absent or incompletely expressed in RA-induced cells. In contrast, only RA induced migration toward leukotriene B4 (LTB4). Simultaneous treatment with RA and DMSO proved synergistic with respect to morphological maturation and several functions (e.g. NBT reduction), but complementary stimulation of other activities (e.g. chemotaxis, lysozyme content) could not be demonstrated. Furthermore, characteristics induced by DMSO (i.e., expression of C5a and FMLP receptors and accumulation of lysozyme) were inhibited by the addition of RA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Chemical inhibitors of the deubiquitinase USP7 are currently being developed as anticancer agents based on their capacity to stabilize P53. Regardless of this activity, USP7 inhibitors also generate DNA damage in a p53‐independent manner. However, the mechanism of this genotoxicity and its contribution to the anticancer effects of USP7 inhibitors are still under debate. Here we show that, surprisingly, even if USP7 inhibitors stop DNA replication, they also induce a widespread activation of CDK1 throughout the cell cycle, which leads to DNA damage and is toxic for mammalian cells. In addition, USP7 interacts with the phosphatase PP2A and supports its active localization in the cytoplasm. Accordingly, inhibition of USP7 or PP2A triggers very similar changes of the phosphoproteome, including a widespread increase in the phosphorylation of CDK1 targets. Importantly, the toxicity of USP7 inhibitors is alleviated by lowering CDK1 activity or by chemical activation of PP2A. Our work reveals that USP7 limits CDK1 activity at all cell cycle stages, providing a novel mechanism that explains the toxicity of USP7 inhibitors through untimely activation of CDK1.  相似文献   

8.
Triple-negative breast cancer (TNBC) is an aggressive disease that lacks established markers to direct therapeutic intervention. Thus, these tumors are routinely treated with cytotoxic chemotherapies (e.g., anthracyclines), which can cause severe side effects that impact quality of life. Recent studies indicate that the retinoblastoma tumor suppressor (RB) pathway is an important determinant in TNBC disease progression and therapeutic outcome. Furthermore, new therapeutic agents have been developed that specifically target the RB pathway, potentially positioning RB as a novel molecular marker for directing treatment. The current study evaluates the efficacy of pharmacological CDK4/6 inhibition in combination with the widely used genotoxic agent doxorubicin in the treatment of TNBC. Results demonstrate that in RB-proficient TNBC models, pharmacological CDK4/6 inhibition yields a cooperative cytostatic effect with doxorubicin but ultimately protects RB-proficient cells from doxorubicin-mediated cytotoxicity. In contrast, CDK4/6 inhibition does not alter the therapeutic response of RB-deficient TNBC cells to doxorubicin-mediated cytotoxicity, indicating that the effects of doxorubicin are indeed dependent on RB-mediated cell cycle control. Finally, the ability of CDK4/6 inhibition to protect TNBC cells from doxorubicin-mediated cytotoxicity resulted in recurrent populations of cells specifically in RB-proficient cell models, indicating that CDK4/6 inhibition can preserve cell viability in the presence of genotoxic agents. Combined, these studies suggest that while targeting the RB pathway represents a novel means of treatment in aggressive diseases such as TNBC, there should be a certain degree of caution when considering combination regimens of CDK4/6 inhibitors with genotoxic compounds that rely heavily on cell proliferation for their cytotoxic effects.  相似文献   

9.
10.
Triple-negative breast cancer (TNBC) is an aggressive disease that lacks established markers to direct therapeutic intervention. Thus, these tumors are routinely treated with cytotoxic chemotherapies (e.g., anthracyclines), which can cause severe side effects that impact quality of life. Recent studies indicate that the retinoblastoma tumor suppressor (RB) pathway is an important determinant in TNBC disease progression and therapeutic outcome. Furthermore, new therapeutic agents have been developed that specifically target the RB pathway, potentially positioning RB as a novel molecular marker for directing treatment. The current study evaluates the efficacy of pharmacological CDK4/6 inhibition in combination with the widely used genotoxic agent doxorubicin in the treatment of TNBC. Results demonstrate that in RB-proficient TNBC models, pharmacological CDK4/6 inhibition yields a cooperative cytostatic effect with doxorubicin but ultimately protects RB-proficient cells from doxorubicin-mediated cytotoxicity. In contrast, CDK4/6 inhibition does not alter the therapeutic response of RB-deficient TNBC cells to doxorubicin-mediated cytotoxicity, indicating that the effects of doxorubicin are indeed dependent on RB-mediated cell cycle control. Finally, the ability of CDK4/6 inhibition to protect TNBC cells from doxorubicin-mediated cytotoxicity resulted in recurrent populations of cells specifically in RB-proficient cell models, indicating that CDK4/6 inhibition can preserve cell viability in the presence of genotoxic agents. Combined, these studies suggest that while targeting the RB pathway represents a novel means of treatment in aggressive diseases such as TNBC, there should be a certain degree of caution when considering combination regimens of CDK4/6 inhibitors with genotoxic compounds that rely heavily on cell proliferation for their cytotoxic effects.  相似文献   

11.
The tumor suppressor, retinoblastoma (Rb), is involved in both terminal mitosis and neuronal differentiation. We hypothesized that activation of the Rb pathway would induce cell cycle arrest in primary neural precursor cells, independent of the proposed function of cyclin-dependent kinases 4/6 (CDK4/6) to sequester the CIP/KIP CDK inhibitors (CKIs) p21 and p27 from CDK2. We expressed dominant negative adenovirus mutants of CDKs 2, 4, and 6 (dnCDK2, dnCDK4, and dnCDK6) in neural progenitor cells derived from E12.5 wild type and Rb-deficient mouse embryos. In contrast to previous studies, our results demonstrate that in addition to dnCDK2, the dnCDK4/6 mutants can induce growth arrest. Moreover, the dnCDK4/6-mediated inhibition is Rb-dependent. The dnCDK2 partially inhibited cell growth in Rb-deficient cells, suggesting that CDK2 may have additional targets. A previously proposed function of CDK4/6 is CKI sequestration, thereby preventing the resulting inhibition of CDK2, believed to be the key regulator of cell cycle. However, our immunoprecipitations revealed that the dominant negative CDK mutants could arrest cell growth despite their interaction with p21 and p27. Taken together, our results demonstrate that both CDK2 and CDK4/6 are crucial for cell cycle regulation. Furthermore, our data underscore the importance of the Rb regulatory pathway in neuronal development and cell cycle regulation, independent of CKI sequestration.  相似文献   

12.
Regulation of erythroid differentiation by miR-376a and its targets   总被引:1,自引:0,他引:1  
Wang F  Yu J  Yang GH  Wang XS  Zhang JW 《Cell research》2011,21(8):1196-1209
Lineage differentiation is a continuous process during which fated progenitor cells execute specific programs to produce mature counterparts. This lineage-restricted pathway can be controlled by particular regulators, which are usually exclusively expressed in certain cell types or at specific differentiation stages. Here we report that miR-376a participates in the regulation of the early stages of human erythropoiesis by targeting cyclin-dependent kinase 2 (CDK2) and Argonaute 2 (Ago2). Among various human leukemia cell lines, miR-376a was only detected in K562 cells which originated from a progenitor common to the erythroid and megakaryotic lineages. Enforced expression of miR-376a or silencing of CDK2 and Ago2 by RNAi inhibits erythroid differentiation of K562 cells. Hematopoietic progenitor cells transduced with miR-376a showed a significant reduction of their erythroid clonogenic capacity. MiR-376a is relatively abundant in erythroid progenitor cells, where it reduces expression of CDK2 and maintains a low level of differentiation due to cell cycle arrest and decreased cell growth. Following erythroid induction, miR-376a is significantly down-regulated and CDK2 is released from miR-376a inhibition, thereby facilitating the escape of progenitor cells from the quiescent state into erythroid differentiation. Moreover, our results establish a functional link between miR-376a and Ago2, a key factor in miRNA biogenesis and silencing pathways with novel roles in human hematopoiesis.  相似文献   

13.
14.
Inhibitors of cyclin-dependent kinases (CDKs) are an emerging class of drugs for the treatment of cancers. CDK inhibitors are currently under evaluation in clinical trials as single agents and as sensitizers in combination with radiation therapy and chemotherapies. Drugs that target CDKs could have important inhibitory effects on cancer cell cycle progression, an extremely important mechanism in the control of cancer cell growth. Using rational drug design, we designed and synthesized fluorescent CDK inhibitors (VMY-1-101 and VMY-1-103) based on a purvalanol B scaffold. The new agents demonstrated more potent CDK inhibitory activity, enhanced induction of G2/M arrest and modest apoptosis as compared to purvalanol B. Intracellular imaging of the CDK inhibitor distribution was performed to reveal drug retention in the cytoplasm of treated breast cancer cells. In human breast cancer tissue, the compounds demonstrated increased binding as compared to the fluorophore. The new fluorescent CDK inhibitors showed undiminished activity in multidrug resistance (MDR) positive breast cancer cells, indicating that they are not a substrate for p-glycoprotein. Fluorescent CDK inhibitors offer potential as novel theranostic agents, combining therapeutic and diagnostic properties in the same molecule.  相似文献   

15.
Chemical agents for cell cycle synchronization have greatly facilitated the study of biochemical events driving cell cycle progression. G1, S and M phase inhibitors have been developed and used widely in cell cycle research. However, currently there are no effective G2 phase inhibitors and synchronization of cultured cells in G2 phase has been challenging. Recently, a selective CDK1 inhibitor, RO-3306, has been identified that reversibly arrests proliferating human cells at the G2/M phase border and provides a novel means for cell cycle synchronization. A single-step protocol using RO-3306 permits the synchronization of >95% of cycling cancer cells in G2 phase. RO-3306 arrested cells enter mitosis rapidly after release from the G2 block thus allowing for isolation of mitotic cells without microtubule poisons. RO-3306 represents a new molecular tool for studying CDK1 function in human cells.  相似文献   

16.
17.
In the CNS, transferrin (Tf) is expressed by the oligodendroglial cells (OLGcs) and is essential for their development. We have previously shown that apotransferrin (aTf) accelerates maturation of OLGcs in vivo as well as in vitro. The mechanisms involved in this action appear to be complex and have not been completely elucidated. The aim of this study was to investigate if Tf participates in the regulation of the cell cycle of oligodendroglial progenitor cells (OPcs). Primary cultures of OPcs were treated with aTf and/or with different combinations of mitogenic factors. Cell cycle progression was studied by BrdU incorporation, flow cytometry and by the expression of cell cycle regulatory proteins. Apotransferrin decreased the number of BrdU+ cells, increasing the cell cycle time and decreasing the number of cells in S phase. The cell cycle inhibitors p27kip1, p21cip1 and p53 were increased, and in agreement with these results, the activity of the complexes involved in G1-S progression (cyclin D/CDK4, cyclin E/CDK2), was dramatically decreased. Apotransferrin also inhibited the mitogenic effects of PDGF and PDGF/IGF on OPcs, but did not affect their proliferation rate in the presence of bFGF, bFGF/PDGF or bFGF/IGF. Our results indicate that inhibition of the progression of the cell cycle of OPcs by aTf, even in the presence of PDGF, leads to an early beginning of the differentiation program, evaluated by different maturation markers (O4, GC and MBP) and by morphological criteria. The modulation by aTf of the response of OPcs to PDGF supports the idea that this glycoprotein might act as a key regulator of the OLGc lineage progression.  相似文献   

18.
We have examined the effects of the CDK1 inhibitor CGP74514A on cell cycle- and apoptosis-related events in human leukemia cells. An 18-hr exposure to 5 mM CGP74514A induced mitochondrial damage (i.e., loss of Dym) and apoptosis in multiple human leukemia cell lines (e.g., U937, HL-60, KG-1, CCRF-CEM, Raji, and THP; range 30-95%). In U937 cells, CGP74514A- induced apoptosis (5 mM) became apparent within 4 hr and approached 100% by 24 hr. The pan- caspase inhibitor Boc-fmk and the caspase-8 inhibitor IETD-fmk opposed CGP74514A-induced caspase-9 activation and PARP degradation, but not cytochrome c or Smac/DIABLO release. CGP74514A-mediated apoptosis was substantially blocked by ectopic expression of full-length Bcl- 2, a loop-deleted mutant Bcl-2, and Bcl-xL. CGP74514A treatment (5 mM; 18 hr) resulted in increased p21CIP1 expression, p27KIP1 degradation, diminished E2F1 expression, and dephosphorylation of p34cdc2. It also induced early (i.e., within 2 hr) inhibition of CDK1 activity and dephosphorylation of pRb, followed by pRb degradation, but did not block pRb phosphorylation at CDK2- and CDK4- specific sites. These findings indicate that the selective CDK1 inhibitor, CGP74514A, induces complex changes in cell cycle-related proteins in human leukemia cells accompanied by extensive mitochondrial damage, caspase activation, and apoptosis.

Key Words:

Leukemia, CDK1 Inhibitor, Apoptosis, CGP74514A  相似文献   

19.
Terminal cell differentiation involves permanent withdrawal from the cell division cycle. The inhibitors of cyclin-dependent kinases (CDKs) are potential molecules functioning to couple cell cycle arrest and cell differentiation. In murine C2C12 myoblast cells, G1 CDK enzymes (CDK2, CDK4, and CDK6) associate with four CDK inhibitors: p18INK4c, p19INK4d, p21, and p27Kip1. During induced myogenesis, p21 and its associated CDK proteins underwent an initial increase followed by a decrease as cells became terminally differentiated. The level of p27 protein gradually increased, but the amount of total associated CDK proteins remained unchanged. p19 protein decreased gradually during differentiation, as did its associated CDK4 protein. In contrast, p18 protein increased 50-fold, from negligible levels in proliferating myoblasts to clearly detectable levels within 8-12 h of myogenic induction. This initial rise was followed by a precipitous increase between 12 and 24 h postinduction, with p18 protein finally accumulating to its highest level in terminally differentiated cells. Induction of p18 correlated with increased and sequential complex formation--first increasing association with CDK6 and then with CDK4 over the course of myogenic differentiation. All of the CDK6 and half of the CDK4 were complexed with p18 in terminally differentiated C2C12 cells as well as in adult mouse muscle tissue. Finally, kinase activity of CDK2 and CDK4 decreases as C2C12 cells differentiate, whereas the CDK6 kinase activity is low in both proliferating myoblasts and differentiated myotubes. Our results indicate that p18 may play a critical role in causing and/or maintaining permanent cell cycle arrest associated with mature muscle formation.  相似文献   

20.
Differentiation therapy of cancer is being explored as a potential modality for treatment of myeloid leukemia, and derivatives of vitamin D are gaining prominence as agents for this form of therapy. Cyclooxygenase (COX) inhibitors have been reported to enhance 1,25-dihydroxyvitamin D3 (1,25D)-induced monocytic differentiation of promyeloblastic HL60 cells, but the mechanisms of this effect are not fully elucidated, and whether this potentiation can occur in other types of myeloid leukemia is not known. We found that combination treatment with 1,25D and non-specific COX inhibitors acetyl salicylic acid (ASA) or indomethacin can robustly potentiate differentiation of other types of human leukemia cells, i.e. U937, THP-1, and that ASA +/- 1,25D is effective in primary AML cultures. Increased cell differentiation is paralleled by arrest of the cells in the G1 phase of the cell cycle, and by increased phosphorylation of Raf1 and p90RSK1 proteins. However, there is no evidence that this increase in phosphorylation of Raf1 is transmitted through the ERK module of the MAPK signaling cascade. Transfection of small interfering (si) RNA to Raf1 decreased differentiation of U937 cells induced by a combination of ASA or indomethacin with 1,25D. However, phosphorylation levels of ERK1/2, though not of p90RSK, were increased when P-Raf1 levels were decreased by the siRNA, suggesting that in this system the ERK module does not function in the conventional manner. Identification of the strong antiproliferative activity of ASA/1,25D combinations associated with monocytic differentiation has implications for cancer chemoprevention in individuals who have a predisposition to myeloid leukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号