首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The zebrafish sensory lateral line system has emerged as a powerful model for the mechanistic study of collective cell migration and morphogenesis. Recent work has uncovered the details of a signaling network involving the Wnt/β-catenin, Fgf and Delta-Notch pathways that patterns the migrating lateral line primordium into distinct regions. Cells within these regions exhibit different fundamental behaviors that together orchestrate normal lateral line morphogenesis. In this review, we summarize the signaling network that patterns the migrating lateral line primordium and describe how this patterning coordinates crucial morphogenic cell behaviors.Key words: lateral line, Wnt signaling, Fgf signaling, collective migration, morphogenesis  相似文献   

2.
The zebrafish posterior lateral line is formed during early development by the deposition of neuromasts from a migrating primordium. The molecular mechanisms regulating the regional organization and migration of the primordium involve interactions between Fgf and Wnt/-catenin signaling and the establishment of specific cxcr4b and cxcr7b cytokine receptor expression domains. Itch has been identified as a regulator in several different signaling pathways, including Wnt and Cxcr4 signaling. We identified two homologous itch genes in zebrafish, itcha and itchb, with generalized expression patterns. By reducing itchb expression in particular upon morpholino knockdown, we demonstrated the importance of Itch in regulating lateral line development by perturbing the patterns of cxcr4b and cxcr7b expression. Itch knockdown results in a failure to down-regulate Wnt signaling and overexpression of cxcr4b in the primordium, slowing migration of the posterior lateral line primordium and resulting in abnormal development of the lateral line.  相似文献   

3.
The collective migration of cells in the form of cohesive tissues is a hallmark of both morphogenesis and repair. The extrinsic cues that direct these complex migrations usually act by regulating the dynamics of a specific subset of cells, those at the leading edge. Given that normally the function of tissue migration is to lay down multicellular structures, such as branched epithelial networks or sensory organs, it is surprising how little is known about the mechanisms that organize cells behind the leading edge. Cells of the zebrafish lateral line primordium switch from mesenchyme-like leader cells to epithelial rosettes that develop into mechanosensory organs. Here, we show that this transition is regulated by an Fgf signaling circuit that is active within the migrating primordium. Point sources of Fgf ligand drive surrounding cells towards a ;non-leader' fate by increasing their epithelial character, a prerequisite for rosette formation. We demonstrate that the dynamic expression of Fgf ligands determines the spatiotemporal pattern of epithelialization underlying sensory organ formation in the lateral line. Furthermore, this work uncovers a surprising link between internal tissue organization and collective migration.  相似文献   

4.
Morphogenesis is a fascinating but complex and incompletely understood developmental process. The sensory lateral line system consists of only a few hundred cells and is experimentally accessible making it an excellent model system to interrogate the cellular and molecular mechanisms underlying segmental morphogenesis. The posterior lateral line primordium periodically deposits prosensory organs as it migrates to the tail tip. We demonstrate that periodic proneuromast deposition is governed by a fundamentally different developmental mechanism than the classical models of developmental periodicity represented by vertebrate somitogenesis and early Drosophila development. Our analysis demonstrates that proneuromast deposition is driven by periodic lengthening of the primordium and a stable Wnt/β-catenin activation domain in the leading region of the primordium. The periodic lengthening of the primordium is controlled by Wnt/β-catenin/Fgf-dependent proliferation. Once proneuromasts are displaced into the trailing Wnt/β-catenin-free zone they are deposited. We have previously shown that Wnt/β-catenin signaling induces Fgf signaling and that interactions between these two pathways regulate primordium migration and prosensory organ formation. Therefore, by coordinating migration, prosensory organ formation and proliferation, localized activation of Wnt/β-catenin signaling in the leading zone of the primordium plays a crucial role in orchestrating lateral line morphogenesis.  相似文献   

5.
The posterior lateral line (pLL) in zebrafish has emerged as an excellent system to study how a sensory organ system develops. Here we review recent studies that illustrate how interactions between multiple signaling pathways coordinate cell fate,morphogenesis, and collective migration of cells in the posterior lateral line primordium. These studies also illustrate how the pLL system is contributing much more broadly to our understanding of mechanisms operating during the growth, regeneration, and self-organization of other organ systems during development and disease.  相似文献   

6.
The directional migration of many cell populations occurs as a coherent group. An amenable model is provided by the posterior lateral line in zebrafish, which is formed by a cohesive primordium that migrates from head to tail and deposits future neuromasts at intervals. We found that prior to the onset of migration, the compact state of the primordium is not fully established, as isolated cells with lateral line identity are present caudal to the main primordium. These isolated cells are retained in position such that they fuse with the migrating primordium as it advances, and later contribute to the leading zone and terminal neuromasts. We found that the isolated lateral line cells are positioned by two antagonistic cues: Fgf signalling attracts them towards the primordium, which counteracts Sdf1α/Cxcr4b-mediated caudal attraction. These findings reveal a novel chemotactic role for Fgf signalling in which it enables the coalescence of the lateral line primordium from an initial fuzzy pattern into a compact group of migrating cells.  相似文献   

7.
Chemokine signaling regulates sensory cell migration in zebrafish   总被引:3,自引:0,他引:3  
Chemokines play an important role in the migration of a variety of cells during development. Recent investigations have begun to elucidate the importance of chemokine signaling within the developing nervous system. To better appreciate the neural function of chemokines in vivo, the role of signaling by SDF-1 through its CXCR4 receptor was analyzed in zebrafish. The SDF-1-CXCR4 expression pattern suggested that SDF-1-CXCR4 signaling was important for guiding migration by sensory cells known as the migrating primordium of the posterior lateral line. Ubiquitous induction of the ligand in transgenic embryos, antisense knockdown of the ligand or receptor, and a genetic receptor mutation all disrupted migration by the primordium. Furthermore, in embryos in which endogenous SDF-1 was knocked down, the primordium migrated towards exogenous sources of SDF-1. These data demonstrate that SDF-1 signaling mediated via CXCR4 functions as a chemoattractant for the migrating primordium and that chemokine signaling is both necessary and sufficient for directing primordium migration.  相似文献   

8.
The shape of most complex organ systems arises from the directed migration of cohesive groups of cells. Here, we dissect the role of the chemokine guidance receptor Cxcr4b in regulating the collective migration of one such cohesive tissue, the zebrafish lateral line primordium. Using in vivo imaging, we show that the shape and organization of the primordium is surprisingly labile, and that internal cell movements are uncoordinated in embryos with reduced Cxcr4b signaling. Genetic mosaic experiments reveal that single cxcr4b mutant cells can migrate in a directional manner when placed in wild-type primordia, but that they are specifically excluded from the leading edge. Moreover, a remarkably small number of SDF1a-responsive cells are able to organize an entire cxcr4b mutant primordium to restore migration and organogenesis in the lateral line. These results reveal a role for chemokine signaling in mediating the self-organizing migration of tissues during morphogenesis.  相似文献   

9.
10.
11.
We examine at the cellular level the postembryonic development of the posterior lateral line in the zebrafish. We show that the first wave of secondary neuromasts is laid down by a migrating primordium, primII. This primordium originates from a cephalic region much like the primordium that formed the primary line during embryogenesis. PrimII contributes to both the lateral and the dorsal branches of the posterior lateral line. Once they are deposited by the primordium, the differentiating neuromasts induce the specialisation of overlying epidermal cells into a pore-forming annulus, and the entire structure begins to migrate ventrally across the epithelium. Thus the final two-dimensional pattern depends on the combination of two orthogonal processes: anteroposterior waves of neuromast formation and dorsoventral migration of individual neuromasts. Finally, we examine how general these migratory processes can be by describing two fish species with very different adult patterns, Astyanax fasciatus (Mexican blind cavefish) and Oryzias latipes (medaka). We show that their primary patterns are nearly identical to that observed in zebrafish embryos, and that their postembryonic growth relies on the same combination of migratory processes that we documented in the case of the zebrafish.  相似文献   

12.
Pattern formation in the lateral line of zebrafish.   总被引:1,自引:0,他引:1  
The lateral line of fish and amphibians is a sensory system that comprises a number of individual sense organs, the neuromasts, arranged in a defined pattern on the surface of the body. A conspicuous part of the system is a line of organs that extends along each flank (and which gave the system its name). At the end of zebrafish embryogenesis, this line comprises 7-8 neuromasts regularly spaced between the ear and the tip of the tail. The neuromasts are deposited by a migrating primordium that originates from the otic region. Here, we follow the development of this pattern and show that heterogeneities within the migrating primordium prefigure neuromast formation.  相似文献   

13.
Branching morphogenesis of the Drosophila tracheal system relies on the fibroblast growth factor receptor (FGFR) signaling pathway. The Drosophila FGF ligand Branchless (Bnl) and the FGFR Breathless (Btl/FGFR) are required for cell migration during the establishment of the interconnected network of tracheal tubes. However, due to an important maternal contribution of members of the FGFR pathway in the oocyte, a thorough genetic dissection of the role of components of the FGFR signaling cascade in tracheal cell migration is impossible in the embryo. To bypass this shortcoming, we studied tracheal cell migration in the dorsal air sac primordium, a structure that forms during late larval development. Using a mosaic analysis with a repressible cell marker (MARCM) clone approach in mosaic animals, combined with an ethyl methanesulfonate (EMS)-mutagenesis screen of the left arm of the second chromosome, we identified novel genes implicated in cell migration. We screened 1123 mutagenized lines and identified 47 lines displaying tracheal cell migration defects in the air sac primordium. Using complementation analyses based on lethality, mutations in 20 of these lines were genetically mapped to specific genomic areas. Three of the mutants were mapped to either the Mhc or the stam complementation groups. Further experiments confirmed that these genes are required for cell migration in the tracheal air sac primordium.  相似文献   

14.
The zebrafish posterior lateral line (pLL) is a sensory system that comprises clusters of mechanosensory organs called neuromasts (NMs) that are stereotypically positioned along the surface of the trunk. The NMs are deposited by a migrating pLL primordium, which is organized into polarized rosettes (proto-NMs). During migration, mature proto-NMs are deposited from the trailing part of the primordium, while progenitor cells in the leading part give rise to new proto-NMs. Wnt signaling is active in the leading zone of the primordium and global Wnt inactivation leads to dramatic disorganization of the primordium and a loss of proto-NM formation. However, the exact cellular events that are regulated by the Wnt pathway are not known. We identified a mutant strain, lef1(nl2), that contains a lesion in the Wnt effector gene lef1. lef1(nl2) mutants lack posterior NMs and live imaging reveals that rosette renewal fails during later stages of migration. Surprisingly, the overall primordium patterning, as assayed by the expression of various markers, appears unaltered in lef1(nl2) mutants. Lineage tracing and mosaic analyses revealed that the leading cells (presumptive progenitors) move out of the primordium and are incorporated into NMs; this results in a decrease in the number of proliferating progenitor cells and eventual primordium disorganization. We concluded that Lef1 function is not required for initial primordium organization or migration, but is necessary for proto-NM renewal during later stages of pLL formation. These findings revealed a novel role for the Wnt signaling pathway during mechanosensory organ formation in zebrafish.  相似文献   

15.
16.
The lateral line is a placodally derived mechanosensory organ in anamniotes that detects the movement of water. In zebrafish embryos, a migrating primordium deposits seven to nine clusters of sensory hair cells, or neuromasts, at intervals along the trunk. Postembryonically, neuromasts continue to be added. We show that some secondary neuromasts arise from a pool of latent precursors that are deposited by the primordium between primary neuromasts. Interneuromast cells lie adjacent to the lateral line nerve and associated glia. These cells remain quiescent while they are juxtaposed with the glia; however, when they move away from the nerve they increase proliferation and form neuromasts. If glia are manually removed or genetically ablated by mutations in cls/sox10, hypersensitive (hps), or rowgain (rog), neuromasts precociously differentiate. Transplantation of wt glia into mutants rescues the appropriate temporal differentiation of interneuromast cells. Our studies reveal a role for glia in regulating sensory hair cell precursors.  相似文献   

17.
A Titin mutation defines roles for circulation in endothelial morphogenesis   总被引:2,自引:0,他引:2  
Morphogenesis of the developing vascular network requires coordinated regulation of an extensive array of endothelial cell behaviors. Precisely regulated signaling molecules such as vascular endothelial growth factor (VEGF) direct some of these endothelial behaviors. Newly forming blood vessels also become subjected to novel biomechanical forces upon initiation of cardiac contractions. We report here the identification of a recessive mouse mutation termed shrunken-head (shru) that disrupts function of the Titin gene. Titin was found to be required for the initiation of proper heart contractions as well as for maintaining the correct overall shape and orientation of individual cardiomyocytes. Cardiac dysfunction in shrunken-head mutant embryos provided an opportunity to study the effects of lack of blood circulation on the morphogenesis of endothelial cells. Without blood flow, differentiating endothelial cells display defects in their shapes and patterns of cell-cell contact. These endothelial cells, without exposure to blood circulation, have an abnormal distribution within vasculogenic vessels. Further effects of absent blood flow include abnormal spatial regulation of angiogenesis and elevated VEGF signaling. The shrunken-head mutation has provided an in vivo model to precisely define the roles of circulation on cellular and network aspects of vascular morphogenesis.  相似文献   

18.
19.
Expression of a mouse atonal homologue, math1, defines cells with the potential to become sensory hair cells in the mouse inner ear (Science 284 (1999) 1837) and Notch signaling limits the number of cells that are permitted to adopt this fate (Nat. Genet. 21 (1999) 289; J. Neurocytol. 28 (1999) 809). Failure of lateral inhibition mediated by Notch signaling is associated with an overproduction of ear hair cells in the zebrafish mind bomb (mib) and deltaA mutants (Development 125 (1998a) 4637; Development 126 (1999) 5669), suggesting a similar role for these genes in limiting the number of hair cells in the zebrafish ear. This study extends the analysis of proneural and neurogenic gene expression to the lateral line system, which detects movement via clusters of related sensory hair cells in specialized structures called neuromasts. We have compared the expression of a zebrafish atonal homologue, zath1, and neurogenic genes, deltaA, deltaB and notch3, in neuromasts and the posterior lateral line primordium (PLLP) of wild-type and mib mutant embryos. We describe progressive restriction of proneural and neurogenic gene expression in the migrating PLLP that appears to correlate with selection of hair cell fate in maturing neuromasts. In mib mutants there is a failure to restrict expression of zath1 and Delta homologues in the neuromasts revealing similarities with the phenotype previously described in the ear.  相似文献   

20.
李林川  瞿礼嘉 《植物学报》2006,23(5):459-465
叶片(包括子叶)是茎端分生组织产生的第一类侧生器官, 在植物发育中具有重要地位。早期叶片发育包括三个主要过程: 叶原基的起始, 叶片腹背性的建立和叶片的延展。大量证据表明叶片发育受到体内遗传机制和体外环境因子的双重调节。植物激素, 尤其是生长素在协调体内外调节机制中起着不可或缺的作用。生长素的稳态调控、极性运输和信号转导影响叶片发育的全过程。本文着重介绍生长素在叶片生长发育和形态建成中的调控作用, 试图了解复杂叶片发育调控网络。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号