共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
MDM2 expression is down-regulated upon E2F1 over-expression, but the mechanism is not well defined. In the current study, we found that E2F1 inhibits MDM2 expression by suppressing its promoter activity. Although E2F1 binds to the MDM2 promoter, the inhibitory effect of E2F1 on the MDM2 promoter does not require the direct binding. We demonstrate that E2F1 inhibits MDM2 promoter activity in a p53-dependent manner. Knockdown of p53 in U2OS cells impairs the inhibitory effect of E2F1 on the MDM2 promoter. Consistent with this observation, E2F1 does not inhibit MDM2 promoter activity in p53-deficient H1299 cells, and the inhibition is restored when p53 is expressed exogenously. Both E2F1 and p53 are up-regulated after DNA damage stimulation. We show that such stimulation induces E2F1 to inhibit MDM2 promoter activity and promote p53 accumulation. Furthermore, inhibition of MDM2 by E2F1 promotes E2F1 induced apoptosis. These data suggest that E2F1 regulates the MDM2-p53 pathway by inhibiting p53 induced up-regulation of MDM2. 相似文献
5.
6.
Jin S 《Autophagy》2005,1(3):171-173
Autophagy was recently established as a novel tumor suppression mechanism, which stimulated a wave of investigations that were aimed at understanding exactly how autophagy prevents tumorigenesis, as well as to determine to what extent autophagy is implicated in human cancers. Autophagy might exert its tumor suppression function at the subcellular level by removing defective cytoplasmic components, such as damaged mitochondria. In addition, it might function at the cellular level by helping in the orderly removal of damaged cells. Previous studies indicated that autophagy is compromised in human breast, ovarian and prostate cancers. Recent research revealed that autophagy is activated by p53, a critical tumor suppressor that is involved in most, if not all, tumorigenesis. This study places autophagy in a broader context of human cancers. Future work elucidating the role of autophagy in the p53 circuit and p53 function might provide more insight into tumorigenesis and targeted cancer chemotherapy. 相似文献
7.
Yan W Zhang Y Zhang J Liu S Cho SJ Chen X 《The Journal of biological chemistry》2011,286(20):17478-17486
p53 is frequently mutated in tumor cells, and mutant p53 is often highly expressed due to its increased half-life. Thus, targeting mutant p53 for degradation might be explored as a therapeutic strategy to manage tumors that are addicted to mutant p53 for survival. Arsenic trioxide, a drug for patients with acute promyelocytic leukemia, is found to target and degrade a class of proteins with high levels of cysteine residues and vicinal thiol groups, such as promyelocytic leukemia protein (PML) and PML-retinoic acid receptor α fusion protein. Interestingly, wild type p53 is accumulated in cells treated with arsenic compounds, presumably due to arsenic-induced oxidative stresses. In this study, we found that wild type p53 is induced by arsenic trioxide in tumor cells, consistent with published studies. In contrast, we found that arsenic compounds degrade both endogenous and ectopically expressed mutant p53 in time- and dose-dependent manners. We also found that arsenic trioxide decreases the stability of mutant p53 protein through a proteasomal pathway, and blockage of mutant p53 nuclear export can alleviate the arsenic-induced mutant p53 degradation. Furthermore, we found that knockdown of endogenous mutant p53 sensitizes, whereas ectopic expression of mutant p53 desensitizes, tumor cells to arsenic treatment. Taken together, we found that mutant p53 is a target of arsenic compounds, which provides an insight into exploring arsenic compound-based therapy for tumors harboring a mutant p53. 相似文献
8.
Rb dephosphorylation and suppression of E2F activity in human breast tumor cells exposed to a pharmacological concentration of estradiol 总被引:3,自引:0,他引:3
Gewirtz DA Di YM Randolph JK Jain PT Valerie K Bullock S Nath N Chellappan SP 《Archives of biochemistry and biophysics》2001,388(2):243-252
This report characterizes the influence of a pharmacological concentration of estradiol on growth arrest and cell death in MCF-7 breast tumor cells, with a focus on elements of the Rb-E2F cell-cycle regulatory pathway. Continuous exposure of MCF-7 breast tumor cells to 100 microM estradiol produces a marked reduction in the G1 and S phase populations and a corresponding increase in the G2/M population within 24 h; after 48 h, accumulation of cells in G1 becomes evident while after 72 h the cells appear to be equally distributed between the G1 and G2/M phases. The accumulation of cells in G1 is temporally associated with dephosphorylation of the Rb protein and suppression of E2F activity. Estradiol also produces an initial burst of cell death with loss of approximately 40% of the tumor cell population within 24 h; however, there is no tangible evidence for the occurrence of apoptosis based on terminal transferase end-labeling of DNA, DNA fragmentation analysis by alkaline unwinding, cell-cycle analysis or cell morphology. In addition to the lack of caspase-3 in MCF-7 cells, the absence of apoptosis could be related, at least in part, to the fact that estradiol promotes a rapid reduction in levels of the E2F-1 and Myc proteins. Overall, these studies are consistent with the concept that alterations in the levels and/or activity of the E2F family of proteins as well as proteins interacting with the E2F family may influence the nature of the antiproliferative and cytotoxic responses of the breast tumor cell. 相似文献
9.
10.
11.
12.
EILEENWHITE 《Cell research》2002,(Z1)
BAX and BAK are essential regulators of apoptotic signaling through mitochondria in mammalian development and in response to cytotoxic stimuli. To investigate the role of BAX and BAK in transformation and tumorigenesis, primary baby mouse kidney epithelial cells (BMKs) from wild-type, BAX, BAK and BAK and BAK deficient mice were transformed by adenovirus E1A and dominant-negative p53 (p53DD). While E1A alone transforms p53 deficient BMKs, transformation of BAX and/or BAK deficient BMKs still required inactivation of p53. Since BAX and BAK are dispensable for p53 to suppress transformation, but 相似文献
13.
The cell-fate determinant Numb has recently been shown to help activate the tumor suppressor protein p53. Loss of Numb in
breast cancers would result, therefore, in both the activation of the potential oncogene Notch and the diminution of tumor
suppression by p53. 相似文献
14.
Pituitary tumor transforming gene causes aneuploidy and p53-dependent and p53-independent apoptosis 总被引:26,自引:0,他引:26
The pituitary tumor transforming gene, PTTG, is abundantly expressed in several neoplasms. We recently showed that PTTG overexpression is associated with apoptosis and therefore have now studied the role of p53 in this process. In MCF-7 breast cancer cells that express wild type p53, PTTG overexpression caused apoptosis. p53 was translocated to the nuclei in cells expressing PTTG. Overexpression of p53, along with PTTG, augmented apoptosis, whereas expression of the human papillomavirus E6 protein inhibited PTTG-induced apoptosis. In MG-63 osteosarcoma cells that are deficient in p53, PTTG caused cell cycle arrest and subsequent apoptosis that was inhibited by caspase inhibitors. A proteasome inhibitor augmented PTTG expression in stable PTTG transfectants, suggesting that down-regulated PTTG expression is required for cell survival. Finally, MG-63 cells expressing PTTG showed signs of aneuploidy including the presence of micronuclei and multiple nuclei. These results indicate that PTTG overexpression causes p53-dependent and p53-independent apoptosis. In the absence of p53, PTTG causes aneuploidy. These results may provide a mechanism for PTTG-induced tumorigenesis whereby PTTG mediates aneuploidy and subsequent cell transformation. 相似文献
15.
16.
Telomere attrition in primary human fibroblasts induces replicative senescence accompanied by activation of the p53 and p16(INK4a)/RB tumor suppressor pathways. Although the contribution of p53 and its target, p21, to telomere-driven senescence have been well established, the role of p16(INK4a) is controversial. Attempts to dissect the significance of p16(INK4a) in response to telomere shortening have been hampered by the concomitant induction of p16(INK4a) by cell culture conditions. To circumvent this problem, we studied the role of p16(INK4a) in the cellular response to acute telomere damage induced by a dominant negative allele of TRF2, TRF2(Delta B Delta M). This approach avoids the confounding aspects of culture stress because parallel cultures with and without telomere damage can be compared. Telomere damage generated with TRF2(Delta B Delta M) resulted in induction of p16(INK4a) in the majority of cells as detected by immunohistochemistry. Inhibition of p16(INK4a) with shRNA or overexpression of BMI1 had a significant effect on the telomere damage response in p53-deficient cells. While p53 deficiency alone only partially abrogated the telomere damage-induced cell cycle arrest, combined inhibition of p16(INK4a) and p53 led to nearly complete bypass of telomere-directed senescence. We conclude that p16(INK4a) contributes to the p53-independent response to telomere damage. 相似文献
17.
18.
19.
Yoshihara Y Wu D Kubo N Sang M Nakagawara A Ozaki T 《Biochemical and biophysical research communications》2012,421(1):57-63
Appropriate regulation of DNA damage response is pivotal for maintaining genome stability. p53 as well as E2F-1 plays a critical role during DNA damage response, however, the physiological significance of their interaction has been elusive. In the present study, we found that E2F-1 has an inhibitory effect on p53 during adriamycin (ADR)-mediated DNA damage response. Upon ADR exposure, p53 and E2F-1 were markedly induced at protein and mRNA levels in p53-procifient U2OS and HCT116 cells, and formed a stable complex as examined by co-immunoprecipitation experiments. Of note, chromatin immunoprecipitation (ChIP) experiments revealed that ADR-mediated induction coincides with the efficient recruitment of p53 and E2F-1 onto the promoters of p53-target genes, such as p21(WAF1) and BAX. Subsequent RT-PCR and luciferase reporter assays demonstrated that E2F-1 strongly attenuates p53-dependent transactivation of p53-target genes. Importantly, siRNA-mediated knockdown of E2F-1 stimulated apoptosis in response to ADR, which was associated with an accelerated response of p21(WAF1) and BAX. Collectively, our present findings suggest that E2F-1 participates in p53-mediated DNA damage response and might have a checkpoint function to limit overactive p53. 相似文献
20.
Jiang Z Liang P Leng R Guo Z Liu Y Liu X Bubnic S Keating A Murray D Goss P Zacksenhaus E 《Developmental biology》2000,227(1):8-41
We describe temporal and genetic analyses of partially rescued Rb mutant fetuses, mgRb:Rb-/-, that survive to birth and reveal specific defects in skeletal muscle differentiation. We show that in the absence of Rb, these fetuses exhibit increased apoptosis, bona fide endoreduplication, and incomplete differentiation throughout terminal myogenesis. These defects were further augmented in composite mutant fetuses, mgRb:Rb-/-:p21-/-, lacking both Rb and the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Although E2F1 and p53 mediate ectopic DNA synthesis and cell death in several tissues in Rb mutant embryos, both endoreduplication and apoptosis persisted in mgRb:Rb-/-:E2F1-/- and mgRb:Rb-/-:p53-/- compound mutant muscles. Thus, combined inactivation of Rb and p21(Waf1/Cip1) augments endoreduplication and apoptosis, whereas E2F1 and p53 are dispensable during aberrant myogenesis in Rb-deficient fetuses. 相似文献