首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
We describe temporal and genetic analyses of partially rescued Rb mutant fetuses, mgRb:Rb-/-, that survive to birth and reveal specific defects in skeletal muscle differentiation. We show that in the absence of Rb, these fetuses exhibit increased apoptosis, bona fide endoreduplication, and incomplete differentiation throughout terminal myogenesis. These defects were further augmented in composite mutant fetuses, mgRb:Rb-/-:p21-/-, lacking both Rb and the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). Although E2F1 and p53 mediate ectopic DNA synthesis and cell death in several tissues in Rb mutant embryos, both endoreduplication and apoptosis persisted in mgRb:Rb-/-:E2F1-/- and mgRb:Rb-/-:p53-/- compound mutant muscles. Thus, combined inactivation of Rb and p21(Waf1/Cip1) augments endoreduplication and apoptosis, whereas E2F1 and p53 are dispensable during aberrant myogenesis in Rb-deficient fetuses.  相似文献   

10.
11.
It is widely accepted that adenoviral E1A exerts its influence on recipient cells through binding to the retinoblastoma (Rb) family proteins, followed by a global release of E2F factors from pocket-protein control. Our study challenges this simple paradigm by demonstrating previously unappreciated complexity. We show that E1A-expressing primary and transformed cells are characterized by the persistence of Rb-E2F1 complexes. We provide evidence that E1A causes Rb stabilization by interfering with its proteasomal degradation. Functional experiments supported by biochemical data reveal not only a dramatic increase in Rb and E2F1 protein levels in E1A-expressing cells but also demonstrate their activation throughout the cell cycle. We further show that E1A activates an Rb- and E2F1-dependent S-phase checkpoint that attenuates the growth of cells that became hyperploid through errors in mitosis and supports the fidelity DNA replication even in the absence of E2F complexes with other Rb family proteins, thereby functionally substituting for the loss of p53. Our results support the essential role of Rb and E2F1 in the regulation of genomic stability and DNA damage checkpoints.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Caspase-2 is an initiator caspase, which has been implicated to function in apoptotic and non-apoptotic signalling pathways, including cell-cycle regulation, DNA-damage signalling and tumour suppression. We previously demonstrated that caspase-2 deficiency enhances E1A/Ras oncogene-induced cell transformation and augments lymphomagenesis in the EμMyc mouse model. Caspase-2(-/-) mouse embryonic fibroblasts (casp2(-/-) MEFs) show aberrant cell-cycle checkpoint regulation and a defective apoptotic response following DNA damage. Disruption of cell-cycle checkpoints often leads to genomic instability (GIN), which is a common phenotype of cancer cells and can contribute to cellular transformation. Here we show that caspase-2 deficiency results in increased DNA damage and GIN in proliferating cells. Casp2(-/-) MEFs readily escape senescence in culture and exhibit increased micronuclei formation and sustained DNA damage during cell culture and following γ-irradiation. Metaphase analyses demonstrated that a lack of caspase-2 is associated with increased aneuploidy in both MEFs and in EμMyc lymphoma cells. In addition, casp2(-/-) MEFs and lymphoma cells exhibit significantly decreased telomere length. We also noted that loss of caspase-2 leads to defective p53-mediated signalling and decreased trans-activation of p53 target genes upon DNA damage. Our findings suggest that loss of caspase-2 serves as a key function in maintaining genomic integrity, during cell proliferation and following DNA damage.  相似文献   

19.
p53 binding protein 1 (53BP1) is a putative DNA damage sensor that accumulates at sites of double-strand breaks (DSBs) in a manner dependent on histone H2AX. Here we show that the loss of one or both copies of 53BP1 greatly accelerates lymphomagenesis in a p53-null background, suggesting that 53BP1 and p53 cooperate in tumor suppression. A subset of 53BP1-/- p53-/- lymphomas, like those in H2AX-/- p53-/- mice, were diploid and harbored clonal translocations involving antigen receptor loci, indicating misrepair of DSBs during V(D)J recombination as one cause of oncogenic transformation. Loss of a single 53BP1 allele compromised genomic stability and DSB repair, which could explain the susceptibility of 53BP1+/- mice to tumorigenesis. In addition to structural aberrations, there were high rates of chromosomal missegregation and accumulation of aneuploid cells in 53BP1-/- p53+/+ and 53BP1-/- p53-/- tumors as well as in primary 53BP1-/- splenocytes. We conclude that 53BP1 functions as a dosage-dependent caretaker that promotes genomic stability by a mechanism that preserves chromosome structure and number.  相似文献   

20.
Apoptosis is intimately connected to cell cycle regulation via the Retinoblastoma (Rb)-E2F pathway and thereby serves an essential role in tumor suppression by eliminating aberrant hyperproliferative cells. Upon loss of Rb activity, an apoptotic response can be elicited through both p53-dependent and p53-independent mechanisms. While much of this apoptotic response has been attributed to the p19ARF/p53 pathway, increasing evidence has supported the role of protein tyrosine phosphatases (PTPs) in contributing to the initiation of the Rb-E2F-associated apoptotic response. One protein tyrosine phosphatase, PTP-1B, which is induced by the Rb-E2F pathway, has been shown to contribute to a p53-independent apoptotic pathway by inactivating focal adhesion kinase. This report identifies two additional PTPs, SHP-2 and PTP-PEST, that are also directly activated by the Rb-E2F pathway and which can contribute to signal transduction during p53-independent apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号