首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Female fruit flies, Drosophila melanogaster, lay their eggs on decaying plant material. Foraging fly larvae strongly depend on the availability of dietary microbes, such as yeasts, to reach the adult stage. In contrast, strong interference competition with filamentous fungi can cause high mortality among Drosophila larvae. Given that many insects are known for employing beneficial microbes to combat antagonistic ones, we hypothesized that fly larvae engaged in competition with the noxious mould Aspergillus nidulans benefit from the presence of dietary yeast species, especially when they are associated with increasingly species rich yeast communities (ranging from one to six yeast species per community). On a nutrient‐limited fruit substrate infested with A. nidulans, both larval survival and development time were positively affected by more diverse yeast communities. On a mould‐free fruit substrate, merely larval development but not survival was found to be affected by increasing species richness of dietary yeasts. Not only yeast diversity had an effect on D. melanogaster life‐history traits, but also the identity of the yeast combinations. These findings demonstrate the importance of the structure and diversity of microbial communities in mutualistic animal–microbe interactions.  相似文献   

2.
Folates and Folic Acid: From Fundamental Research Toward Sustainable Health   总被引:1,自引:0,他引:1  
Folates are of paramount importance in one-carbon metabolism of most organisms. Plants and microorganisms are able to synthesize folates de novo, making them the main dietary source for humans and animals, which are dependent on food or feed supplies for folates. Folate deficiency is an increasing problem in the developing, as well as in the developed regions of the world, affecting millions of people. Different strategies, such as food fortification and folic acid supplementation, remain far from accessible for the poor rural populations in developing countries. Increasing knowledge concerning folate biosynthesis, transport and catabolism does not only deepen our insight on the regulation of folate metabolism but also provides the keys towards folate enhancement through metabolic engineering in bacteria, as well as in plants. Recently, promising results were obtained using such an approach, but further fundamental research is a prerequisite to develop a practicable solution to fight folate deficiency. In parallel, progress in the development and improvement of folate analysis has been made. Here, we provide the state-of-the-art of folate biosynthesis, catabolism, and salvage. Finally, we report on progress in folate biofortification and discuss the agroeconomical aspect of biofortified crop plants.  相似文献   

3.
The earwig Euborellia annulipes (Lucas) (Dermaptera: Anisolabididae), a generalist predator, has been observed in fruits infested with fruit fly larvae, which are frequently parasitized by parasitoid wasps. Neither the capacity of earwigs to predate on fruit flies nor intraguild interactions between earwigs and fruit fly parasitoids have been investigated. Here, we studied in laboratory conditions the predation on the fruit fly Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) by the earwig E. annulipes, and whether parasitism of fruit fly larvae by the parasitoid wasp Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) influences predation by the earwig. We evaluated the predation capacity, functional response and prey preference of E. annulipes for parasitized and non-parasitized fruit fly larvae in choice and no-choice tests. We found that earwigs prey on second- and third-instar larvae and pupae of C. capitata and consumed larger numbers of second-instar larvae, followed by third-instar larvae and pupae. Females prey on larger numbers of fruit flies than did males, regardless of the prey developmental stage, but both sexes exhibited a type II functional response. Interestingly, males killed but did not consume fruit fly larvae more than did females. In no-choice tests, earwig females consumed equal numbers of parasitized and non-parasitized fruit fly larvae. However, in choice tests, the females avoided feeding on parasitized larvae. Subsequent tests with hexane-washed parasitized and non-parasitized larvae showed that putative chemical markings left on fruit flies by parasitoids did not drive the earwig preference towards non-parasitized larvae. These findings suggest that E. annulipes is a potential biological control agent for C. capitata, and that, because the earwig avoids consuming larvae parasitized by D. longicaudata, a combination of the two natural enemies could have an additive effect on pest mortality.  相似文献   

4.
Although most crane fly larvae consume decaying plant materials and their associated microorganisms, all Libnotes species investigated so far are known to be xylophilous insects. Here we report the novel herbivorous feeding ecology of Libnotes puella. We found that L. puella larvae consumed the fruits or seeds of three unrelated plants, Mitrastemon yamamotoi (Mitrastemonaceae), Balanophora tobiracola (Balanophoraceae) and Barringtonia racemosa (Lecythidaceae). The larvae live within dense tubes formed by their feces fastened by their mucous excretions at the final stage, and they pupate within such tubes. This is the first detailed documentation of the fruit‐ and seed‐feeding habit of crane flies.  相似文献   

5.
《Fly》2013,7(1):50-61
From the moment an adult fruit fly ecloses, its primary objective in life is to disperse and locate the source of an attractive food odor upon which to feed and reproduce. The evolution of flight has greatly enhanced the success of fruit flies specifically and insects more generally.1 Control of flight by Drosophila melanogaster is unequivocally visual. Strong optomotor reflexes towards translatory and rotational visual flow stabilize forward flight trajectory, altitude, and speed. 2, 3 The steering responses to translatory and rotational flow in particular are mediated by computationally separate neural circuits in the fly’s visual system,4 and gaze-stabilizing body saccades are elicited by threshold integration of expanding visual flow .5 However, visual information is not alone sufficient to enable a fruit fly to recognize and locate an appropriately smelly object due in part to the relatively poor resolution of its compound eyes. Rather, the animal uses an acute sense of smell to actively track odors during flight. Without a finely adapted olfactory system, the fly’s remarkable visual capabilities are for naught. The relative importance of vision is apparent in the cross-modal fusion of the two modalities for stable active odor tracking.6, 7 Olfactory processing in Drosophila is shaped by ecological and functional forces which are inextricably linked. Thus physiologists seeking the functional determinants of olfactory coding as well as ecologists seeking to understand the mechanisms of speciation do well to consider each others’ point of view. Here we synthesize a broad perspective that integrates across ultimate and proximate mechanisms of odor tracking in Drosophila.  相似文献   

6.
All organisms are infected with a range of symbionts spanning the spectrum of beneficial mutualists to detrimental parasites. The fruit fly Drosophila melanogaster is a good example, as both endosymbiotic Wolbachia, and pathogenic Drosophila C Virus (DCV) commonly infect it. While the pathophysiology and immune responses against both symbionts are the focus of intense study, the behavioural effects of these infections have received less attention. Here we report sex-specific behavioural responses to these infections in D. melanogaster. DCV infection caused increased sleep in female flies, but had no detectable effect in male flies. The presence of Wolbachia did not reduce this behavioural response to viral infection. We also found evidence for a sex-specific cost of Wolbachia, as male flies infected with the endosymbiont became more lethargic when awake. We discuss these behavioural symptoms as potentially adaptive sickness behaviours.  相似文献   

7.
The role of symbiotic microbes in insects, especially the beneficial character of this interaction for insects, has received much attention in recent years as it has been related to important aspects of the host insects' biology such as development, reproduction, survival, and fitness. Among insect hosts, tephritid fruit flies are well known to form beneficial associations with their symbionts. To control these destructive agricultural pests, environmentally friendly approaches, like the sterile insect technique as a component of integrated pest management strategies, remain most effective. In this study, changes in the bacterial profile of mass‐reared oriental fruit flies, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), were examined in both larval and adult stages and also after irradiation by employing a 16S rRNA gene‐based Illumina sequencing approach. Proteobacteria was the prevalent bacterial phylum in non‐irradiated adults and larvae. Alphaproteobacteria was the most abundant class in larvae but almost absent in adults, which was dominated by Gammaproteobacteria. Firmicutes were present in both developmental stages but at lower relative abundance. At genus level, Acetobacter prevailed in the larval stage and members of the Enterobacteriaceae family in adults. Irradiated samples exhibited higher diversity and richness indices compared to the non‐irradiated oriental fruit flies, whereas no significant changes were observed between the two developmental stages of the non‐irradiated samples. Lactobacillus, members of the Orbacecae family, and Morganella were detected but to a lesser degree upon irradiation, whereas the relative abundance of Lactococcus and Orbus increased. The bacterial profile of larvae appeared to be different compared to that of adult B. dorsalis flies. The subsequent application of irradiation at the pupal stage led to the development of different microbiota between treated and untreated samples, affecting diversity and operational taxonomic unit composition. Irradiated samples of oriental fruit flies were characterized by higher species diversity and richness.  相似文献   

8.
Investigations on microbial symbioses in Tephritidae have increased over the past 30 years owing to the potential use of these relationships in developing new control strategies for economically important fruit flies. Bactrocera oleae (Rossi)—the olive fruit fly—is a monophagous species strictly associated with the olive tree, and among all the tephritids, its symbionts are the most investigated. The bacterium Candidatus Erwinia dacicola is the major persistent resident endosymbiont in wild B. oleae populations. Its relationship with B. oleae has been investigated since being identified in 2005. This endosymbiont is vertically transmitted through generations from the female to the egg. It exists at every developmental stage, although it is more abundant in larvae and ovipositing females, and is necessary for both larvae and adults. Studying B. oleae–Ca. E. dacicola, or other B. oleae–microbe interactions, will allow us to develop modern biological control systems for area-wide olive protection and set an example for similar programs in other important food crops. This review summarizes the information available on tephritid–microbe interactions and investigates relationships among fruit flies, bacteria and host plants; however, its focus is on B. oleae and its strict association with Ca. E. dacicola to promote environmentally friendly control strategies for area-wide pest management.  相似文献   

9.
The effect of administering high levels of folic acid to vitamin B12-deficient animals was studied. In B12 deficiency histidine oxidation is decreased. This is the result of both decreased liver folate levels and increases in the proportion of methyltetrahydrofolates. The purpose of this study was to determine if the addition of very high levels of folic acid to B12-deficient diets could increase liver folates and thereby restore histidine oxidation. Rats were fed a soy protein B12-deficient diet containing 10% pectin which has been shown previously to accelerate B12 depletion. When this diet was supplemented with B12 and folic acid, histidine oxidation was 5.4% in 2 h and the livers contained 3.49 micrograms of folate/g. In the absence of B12, the histidine oxidation rate was 0.34% and the liver folate level was 1.33 micrograms/g. When 200 mg/kg of folic acid was added to the B12-deficient diet there was no increase in histidine oxidation (0.35%) but the liver folates were increased to 3.68 micrograms which is about the same as that with B12 supplementation. The percentage tetrahydrofolate of the total liver folates was the same with and without a high level of dietary folic acid. Thus there was an increase in the absolute level of tetrahydrofolate without any increase in folate function as measured by histidine oxidation. Red cell folate levels were the same with and without B12, which is in contrast to the markedly lower liver folate levels in B12 deficiency. These data suggest a difference between B12 regulation of folate metabolism in the liver and in the bone marrow.  相似文献   

10.
Non-anemic women attending a public antenatal clinic were given, daily, a multivitamin tablet containing 78 mg. of elemental iron. The follow-up studies included an analysis of their diets. A total of 311 patients were included, of which one group received a supplement of 0.5 mg. folic acid and 0.005 mg. vitamin B12. The incidence of megaloblastic bone marrow change in the unsupplemented group was 26% and of low blood folates approximately 50%. The incidence of megaloblastic changes was sharply reduced in the supplemented group and the blood folates were elevated to supranormal levels, indicating that the dose of folic acid used may have been above the minimal requirement. Formiminoglutamic acid (FIGLU) excretion could not be correlated with other parameters of folate deficiency. Neutrophil lobe counts did not relate to megaloblastic changes or low folate levels unless there was more than 5% hypersegmentation. The dietary intake was suboptimal in total calories, iron and food folate.  相似文献   

11.
The subcellular distributions of glutamyl carboxypeptidase, folate specific activities, and radioactive metabolites of injected [3H] folic acid were studied in rat liver. The specific activity of glutamyl carboxypeptidase in the lysosomal fraction was near or greater than four times that in the other subcellular fractions.The specific activity of folates was highest in the soluble fraction (102 ng folate/mg protein) and lowest in the microsomal fraction (22 ng folate/mg protein). Nuclear, mitochondrial, and lysosomal folates were 95% folate polyglutamates, and microsomal and soluble folates were 85–90% folate polyglutamates.Injected [3H] folic acid was initially concentrated in the microsomal fraction, as measured by 3H cpm per ng folate.Initially, injected [3H] folic acid was found converted to folate penta- and hexaglutamates in all fractions to a similar extent except in the microsomes where the percentage conversion was much less, as measured by the percentage of total 3H cpm determined to be [3H] folate penta- and hexaglutamates. At 24 h, the conversion of [3H] folates to penta- and hexaglutamates in each fraction was less than that found for the endogenous folates.Injected [3H] folic acid after 2 h was found to consist of 94% reduced folates in the soluble fraction, 56% in the mitochondrial, 55% in the nuclear, 20% in the lysosomal, and 15% in the microsomal fraction.  相似文献   

12.
Consumption of foods that are high in fat contribute to obesity and metabolism‐related disorders. Dietary lipids are comprised of triglycerides and fatty acids, and the highly palatable taste of dietary fatty acids promotes food consumption, activates reward centers in mammals and underlies hedonic feeding. Despite the central role of dietary fats in the regulation of food intake and the etiology of metabolic diseases, little is known about how fat consumption regulates sleep. The fruit fly, Drosophila melanogaster, provides a powerful model system for the study of sleep and metabolic traits, and flies potently regulate sleep in accordance with food availability. To investigate the effects of dietary fats on sleep regulation, we have supplemented fatty acids into the diet of Drosophila and measured their effects on sleep and activity. We found that flies fed a diet of hexanoic acid, a medium‐chain fatty acid that is a by‐product of yeast fermentation, slept more than flies starved on an agar diet. To assess whether dietary fatty acids regulate sleep through the taste system, we assessed sleep in flies with a mutation in the hexanoic acid receptor Ionotropic receptor 56D, which is required for fatty acid taste perception. We found that these flies also sleep more than agar‐fed flies when fed a hexanoic acid diet, suggesting the sleep promoting effect of hexanoic acid is not dependent on sensory perception. Taken together, these findings provide a platform to investigate the molecular and neural basis for fatty acid‐dependent modulation of sleep.  相似文献   

13.
Previous feeding studies showed the polyalcohol erythritol was toxic when ingested by adult laboratory fruit flies (Drosophila melanogaster). We asked whether erythritol could additionally affect fly population growth either through larval toxicity or through effects on adult reproduction. Females did not avoid laying on food substrates with 1M erythritol; laying rate on 1M erythritol food was similar to control food when females were given free‐choice access. Eggs laid or placed on 0.5 M to 2.5 M erythritol foods hatched at normal rates, suggesting erythritol was not toxic to eggs upon contact. Drosophila melanogaster larvae readily consumed food containing 1 M erythritol, but none of these larvae reached pupation. Longevity of larvae feeding on in 1 M erythritol food was significantly reduced relative to controls, and mean ± SE larval lifespan on erythritol was 1.54 ± 0.10 days (max. = 3 days). Exposing cohorts of second‐instar larvae to food with varying concentrations of erythritol showed the LD50 (at 24 hr) concentration was approximately 0.6 M. Taken together, these results suggest erythritol could be employed in effective larval‐sink baits. Adults flies fed with erythritol produced significantly fewer eggs on days when they fed on 1 M erythritol, and egg production was significantly reduced for one additional day after the adults were moved to control food. These findings suggest erythritol is rapid and effective at temporarily suppressing D. melanogaster reproduction, increasing its potential for use in effective insect population control.  相似文献   

14.
The subcellular distributions of glutamyl carboxypeptidase, folate specific activities, and radioactive metabolites of injected [3H] folic acid were studied in rat liver. The specific activity of glutamyl carboxypeptidase in the lysosomal fraction was near or greater than four times that in the other subcellular fractions. The specific activity of folates was highest in the soluble fraction (102 ng folate/mg protein) and lowest in the microsomal fraction (22 ng folate/mg protein). Nuclear, mitochondrial, and lysosomal folates were 95% folate polyglutamates, and microsomal and soluble folates were 85--90% folate polyglutamates. Injected [3H] folic acid was initially concentrated in the microsomal fraction, as measured by 3h cpm per ng folate. Initially, injected [3H] folic acid was found converted to folate penta- and hexaglutamates in all fractions to a similar extent except in the microsomes where the percentage conversion was much less, as measured by the percentage of total 3H cpm determined to be [3H] folate penta- and hexaglutamates. At 24 h, the conversion of [3H] folates to penta- and hexaglutamates in each fraction was less than that found for the endogenous folates. Injected [3H] folic acid after 2h was found to consist of 94% reduced folates in the soluble fraction, 56% in the mitochondrial, 55% in the nuclear, 20% in the lysosomal, and 15% in the microsomal fraction.  相似文献   

15.
The Mediterranean fruit fly [Ceratitis capitata Wiedemann (Diptera: Tephritidae)], or medfly, is mass produced in many facilities throughout the world to supply sterile flies for sterile insect technique programs. Production of sterile males requires large amounts of larval and adult diets. Larval diets comprise the largest economic burdens in the mass production of sterile flies, and are one of the main areas where production costs could be reduced without affecting quality and efficacy. The present study investigated the effect of manipulating diet constituents on larval development and performance. Medfly larvae were reared on diets differing in the proportions of brewer's yeast and sucrose. We studied the effect of such diets on the ability of pupating larvae to accumulate protein and lipids, and on other developmental indicators. Except for diets with a very low proportion of brewer's yeast (e.g., 4%), pupation and adult emergence rates were in general high and satisfactory. The ability of pupating larvae to accumulate lipid reserves and proteins was significantly affected by the sucrose and yeast in the diet, and by the proportion of protein to carbohydrates (P/C). In contrast to previous nutritional studies conducted with other insects, low P/C in medfly larval diets (with excess dietary carbohydrates) resulted in pupating medfly larvae having a relatively reduced load of lipids; medfly larvae protein contents in these diets were, as expected, relatively low. Similarly, high P/C ratios in the diet produced larvae with high protein and lipid contents. Differences with other insects may be due to differential post‐ingestion regulation where a high dietary carbohydrate diet reduces the lipogenic activity of the larvae, and induces a shift from lipid to glucose oxidation. Larvae reared on low P/C diets spent more time foraging in the diet than larvae maintained on a high P/C diet, suggesting a compensatory mechanism to complement nutrient intake. The results suggest that the content of brewer's yeast, the most expensive diet component, could be fine‐tuned without apparently affecting fly quality.  相似文献   

16.
We investigated the growth requirements of symbiont-free and symbiont lambda-bearing Paramecium octaurelia stock 299 for folic acid and biopterin in chemically defined culture medium. Symbiont-free P. octaurelia required both folic acid and biopterin for growth. In the absence of these substances growth of symbiont-free P. octaurelia failed after the first transfer, whereas symbiont lambda-bearing P. octaurelia could be maintained indefinitely in serial subculture. In the absence of folic acid and biopterin, sulfanil-amide inhibited growth of the symbiont lambda-beating protozoa. In the presence of folic acid and biopterin, the antiobiotic selectively inhibited growth of lambda symbionts but did not affect growth of the protozoa. In both cases, inhibition by sulfanilamide was reversed by addition of p-aminobenzoic acid to the medium. These results support our earlier finding that folic acid is required for growth of symbiont-free P. octaurelia 299 and that growth of the lambda-bearing strain without exogenous folate denoted synthesis of folic acid by the symbionts. In addition, it appears that the symbionts produce sufficient biopterin to meet the needs of the host protozoon for growth.  相似文献   

17.
Tests of absorption of folic acid (pteroylglutamic acid) and of dietary folates (pteroylpolyglutamates) were performed in 10 patients with untreated adult coeliac disease, five with dermatitis herpetiformis, and three with nutritional folate deficiency. Absorption of pteroylglutamic acid was impaired in eight patients with coeliac disease and in two with dermatitis herpetiformis. Absorption of pteroylpolyglutamates was impaired in all 10 coeliac patients and in four of the five patients with dermatitis herpetiformis. Absorption of both forms of folate was normal in all three patients with nutritional folate deficiency.  相似文献   

18.
Metabolic stress disinfection and disinfestation (MSDD) is a postharvest treatment designed to control pathogens and arthropod pests on commodities that combines short cycles of low pressure/vacuum and high CO2 with ethanol vapor. Experiments were conducted to evaluate the effect of MSDD treatment on various life stages of Ceratitis capitata (Wiedemann), Mediterranean fruit fly; Bactrocera dorsalis Hendel, oriental fruit fly; and Bactrocera cucurbitae Coquillett, melon fly, in petri dishes and in papaya, Carica papaya L., fruit. In some experiments, the ethanol vapor phase was withheld to separate the effects of the physical (low pressure/ambient pressure cycles) and chemical (ethanol vapor plus low pressure) phases of treatment. In the experiments with tephritid fruit fly larvae and adults in petri dishes, mortality was generally high when insects were exposed to ethanol and low when ethanol was withheld during MSDD treatment, suggesting that ethanol vapor is highly lethal but that fruit flies are quite tolerant of short periods of low pressure treatment alone. When papaya fruit infested with fruit fly eggs or larvae were treated by MSDD, they produced fewer pupae than untreated control fruit, but a substantial number of individuals developed nonetheless. This suggests that internally feeding insects in fruit may be partially protected from the toxic effects of the ethanol because the vapor does not easily penetrate the fruit pericarp and pulp. MSDD treatment using the atmospheric conditions tested has limited potential as a disinfestation treatment for internal-feeding quarantine pests such as fruit flies infesting perishable commodities.  相似文献   

19.
The horn fly, Haematobia irritans, is a serious pest of cattle in North America. The control of horn flies has primarily relied on insecticides. However, the heavy use of insecticides has led to the development of insecticide resistance in horn flies. Novel methods to control horn flies are greatly needed. Transgenic technology is an effective tool to genetically modify insects and may lead to novel methods of pest control based on genomic approaches. Here we report a piggyBac‐mediated transformation of the horn fly via electroporation. Transformation with a DsRed fluorescent marker protein coding region was verified by PCR analysis of individual fly bodies and pupal cases and sequencing of PCR products. However, Southern blot analysis failed to indicate the DsRed gene was integrated into the horn fly genome. Thus, the electroporation protocol may have caused the DsRed gene to be integrated into bacterial symbionts of the horn fly.  相似文献   

20.
Background

Symbiotic microbes represent a driving force of evolutionary innovation by conferring novel ecological traits to their hosts. Many insects are associated with microbial symbionts that contribute to their host’s nutrition, digestion, detoxification, reproduction, immune homeostasis, and defense. In addition, recent studies suggest a microbial involvement in chemical communication and mating behavior, which can ultimately impact reproductive isolation and, hence, speciation. Here we investigated whether a disruption of the microbiota through antibiotic treatment or irradiation affects cuticular hydrocarbon profiles, and possibly mate choice behavior in the tsetse fly, Glossina morsitans morsitans. Four independent experiments that differentially knock down the multiple bacterial symbionts of tsetse flies were conducted by subjecting tsetse flies to ampicillin, tetracycline, or gamma-irradiation and analyzing their cuticular hydrocarbon profiles in comparison to untreated controls by gas chromatography – mass spectrometry. In two of the antibiotic experiments, flies were mass-reared, while individual rearing was done for the third experiment to avoid possible chemical cross-contamination between individual flies.

Results

All three antibiotic experiments yielded significant effects of antibiotic treatment (particularly tetracycline) on cuticular hydrocarbon profiles in both female and male G. m. morsitans, while irradiation itself had no effect on the CHC profiles. Importantly, tetracycline treatment reduced relative amounts of 15,19,23-trimethyl-heptatriacontane, a known compound of the female contact sex pheromone, in two of the three experiments, suggesting a possible implication of microbiota disturbance on mate choice decisions. Concordantly, both female and male flies preferred non-treated over tetracycline-treated flies in direct choice assays.

Conclusions

While we cannot exclude the possibility that antibiotic treatment had a directly detrimental effect on fly vigor as we are unable to recolonize antibiotic treated flies with individual symbiont taxa, our results are consistent with an effect of the microbiota, particularly the obligate nutritional endosymbiont Wigglesworthia, on CHC profiles and mate choice behavior. These findings highlight the importance of considering host-microbiota interactions when studying chemical communication and mate choice in insects.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号