首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
2.
3.
The protein deacetylase SIRT1 has been implicated in the regulation of a large number of cellular processes that are thought to be required for cancer initiation and progression. There are conflicting data that make it unclear whether Sirt1 functions as an oncogene or tumor suppressor. To assess the effect of SIRT1 on the emergence and progression of mammary tumors, we crossed mice that harbor a point mutation that abolishes SIRT1 catalytic activity with mice carrying the polyoma middle T transgene driven by the murine mammary tumor virus promoter (MMTV-PyMT). The absence of SIRT1 catalytic activity neither accelerated nor blocked the formation of tumors and metastases in this model. There was a lag in tumor latency that modestly extended survival in Sirt1 mutant mice that we attribute to a delay in mammary gland development and not to a direct effect of SIRT1 on carcinogenesis. These results are consistent with previous evidence suggesting that Sirt1 is not a tumor promoter or a tumor suppressor.  相似文献   

4.
The increased expression of SIRT1 has recently been identified in numerous human tumors and a possible correlation with c-Myc oncogene has been proposed. However, it remains unclear whether SIRT1 functions as an oncogene or tumor suppressor. We sought to elucidate the role of SIRT1 in liver cancer under the influence of c-Myc and to determine the prognostic significance of SIRT1 and c-Myc expression in human hepatocellular carcinoma. The effect of either over-expression or knock down of SIRT1 on cell proliferation and survival was evaluated in both mouse and human liver cancer cells. Nicotinamide, an inhibitor of SIRT1, was also evaluated for its effects on liver tumorigenesis. The prognostic significance of the immunohistochemical detection of SIRT1 and c-Myc was evaluated in 154 hepatocellular carcinoma patients. SIRT1 and c-Myc regulate each other via a positive feedback loop and act synergistically to promote hepatocellular proliferation in both mice and human liver tumor cells. Tumor growth was significantly inhibited by nicotinamide in vivo and in vitro. In human hepatocellular carcinoma, SIRT1 expression positively correlated with c-Myc, Ki67 and p53 expression, as well as high á-fetoprotein level. Moreover, the expression of SIRT1, c-Myc and p53 were independent prognostic indicators of hepatocellular carcinoma. In conclusion, this study demonstrates that SIRT1 expression supports liver tumorigenesis and is closely correlated with oncogenic c-MYC expression. In addition, both SIRT1 and c-Myc may be useful prognostic indicators of hepatocellular carcinoma and SIRT1 targeted therapy may be beneficial in the treatment of hepatocellular carcinoma.  相似文献   

5.
6.
The protein deacetylase SIRT1 is involved in the regulation of a large number of cellular processes that are thought to be required for cancer initiation and progression. Both SIRT1 activity and tumorigenesis can be influenced by dietary fat and polyphenolics. We set out to determine whether dietary modulations of tumorigenesis are mediated by SIRT1 catalytic functions. We introduced a mammary gland tumor-inducing transgene, MMTV-PyMT, into stocks of mice bearing a H355Y point mutation in the Sirt1 gene that abolishes SIRT1 catalytic activity. Tumor latency was reduced in animals fed a high fat diet but this effect was not dependent on SIRT1 activity. Resveratrol had little effect on tumor formation except in animals heterozygous for the mutant Sirt1 gene. We conclude that the effects of these dietary interventions on tumorigenesis are not mediated by modulation of SIRT1 catalytic activity.  相似文献   

7.
8.
BackgroundCarcinogenesis is governed by a series of genetic alterations and epigenetic changes that lead to aberrant patterns in neoplastic cells. Sirtuin-1(SIRT1), an NAD+-dependent protein deacetylase, is capable of deacetylating histones and non-histone substrates that regulate various physiological activities during tumorigenesis. Recent studies have identified the role of SIRT1 in different stages of cancer, including genome instability, tumor initiation, proliferation, metabolism, and therapeutic response. However, the action of SIRT1 has been reported to be both oncogenic and tumor suppressive during carcinogenesis. Consequently, the biological functions of SIRT1 in cancer remain controversial.Scope of reviewWe highlight the most recent findings on SIRT1 in different stages of tumorigenesis, and update the current status of SIRT1 small molecule modulators in clinical application of cancer treatment.Major conclusionBy targeting both tumor suppressors and oncogenic proteins, SIRT1 has a bifunctional role at different stages of tumorigenesis. The impact of SIRT1 on tumorigenesis is also distinct at different stages and is dependent on its dosages. SIRT1 suppresses tumor initiation through its functions in promoting DNA repair, increasing genome stability, and inhibiting inflammation at the pre-cancer stage. However, SIRT1 enhances tumor proliferation, survival, and drug resistance through its roles in anti-apoptosis, pro-tumor metabolism, and anti-inflammation (inhibition of anti-tumor immunity) at the stages of tumor progression, metastasis, and relapse. Consequently, both SIRT1 inhibitors and activators have been explored for cancer treatment.General significanceBetter understanding the dose- and stage-dependent roles of SIRT1 in each cancer type can provide new avenues of exploration for therapy development.  相似文献   

9.
沉默信息调节因子1(SIRT1)是Sirtuin 家族中的一员,属于烟酰胺(NAD+)依赖的Ⅲ类组蛋白去乙酰化酶,能通过对多种非组蛋白及组蛋白赖氨酸残基进行去乙酰化修饰调节基因表达。近来的研究发现,SIRT1不仅能使肿瘤抑制因子去乙酰化,促进肿瘤发生,还能使肿瘤促进因子去乙酰化,抑制肿瘤发生。SIRT1与肿瘤的生物学特性密切相关,影响肿瘤分期及患者预后。在消化系统肿瘤中,SIRT1具有双面性,既可作为抑癌因子,也可发挥癌因子的作用。近年来,许多研究对SIRT1在肿瘤中的作用靶点及相关信号通路做了深入研究,关于SIRT1在肿瘤中作用机制的新研究不断出现。SIRT1已成为人们攻克肿瘤的一个研究热点。本文通过对SIRT1在肿瘤中的双重作用,尤其是在消化系统肿瘤中的不同作用靶点和参与的信号通路作一综述,希望为临床上治疗消化系统肿瘤提供更有说服力的证据。  相似文献   

10.
11.
SIRT2, a member of the class III histone deacetylase family, has been identified as a tumor suppressor, which is associated with various cellular processes including metabolism and proliferation. However, the effects of SIRT2 on cancer cell migration caused by cytoskeletal rearrangement remain uncertain. Here we show that SIRT2 inhibits cell motility by suppressing actin polymerization. SIRT2 regulates actin dynamics through HSP90 destabilization and subsequent repression of LIM kinase (LIMK) 1/cofilin pathway. SIRT2 directly interacts with HSP90 and regulates its acetylation and ubiquitination. In addition, the deacetylase activity of SIRT2 is required for the regulation of actin polymerization and the ubiquitin-mediated proteasomal degradation of HSP90 induced by SIRT2.  相似文献   

12.
SIRT1 has been considered as a tumor promoter because of its increased expression in some types of cancers and its role in inactivating proteins that are involved in tumor suppression and DNA damage repair. However, recent studies demonstrated that SIRT1 levels are reduced in some other types of cancers, and that SIRT1 deficiency results in genetic instability and tumorigenesis, while overexpression of SIRT1 attenuates cancer formation in mice heterozygous for tumor suppressor p53 or APC. Here, I review these recent findings and discuss the possibility that activation of SIRT1 both extends lifespan and inhibits cancer formation.  相似文献   

13.
In order to identify relevant genetic lesions in gastric carcinoma, we searched for tumor suppressor gene inactivation and K-ras gene mutations by analyzing tumor and control DNAs from 34 patients. These were from an epidemiologically defined area of Italy characterized by one of the world's highest incidences of stomach cancer. Allele losses were investigated by the Southern blotting procedure at 16 polymorphic loci on 11 different chromosomes. Our data demonstrate that chromosomal regions 5q, 11p, 17p and 18q are frequently deleted, and that 7q and 13q chromosome arms are also involved, although at a lower frequency. Loss of heterozygosity (LOH) at region 11p was not found during other surveys carried out on patients of different geographic origins. No specific combination of allelic losses could be recognized in the samples analyzed, the only exception being that tumors with 17p allelic loss also showed LOH on the 18q region. When matching frequent LOH events and the stage of progression of the tumors, we observed a trend of association between advanced stages and allelic losses on 17p and 18q chromosome arms. The analysis of K-ras, carried out by the polymerase chain reaction and denaturing gradient gel electrophoresis, demonstrated transforming mutations in only 3 out of 32 cases. Colorectal tumorigenesis proceeds by the accumulation of genetic alterations, including K-ras mutations and inactivation of tumor suppressor genes on the 5q, 17p and 18q regions. Our data indicate that, although gastric and colorectal neoplasias share common genetic alterations, they probably progress through different pathways.  相似文献   

14.
15.
A number of chromosomal abnormalities including 19q deletions have been associated with the formation of human gliomas. In this study, we employed a proteomics-based approach to identify possible genes involved in glioma tumorigenesis which may serve as potential diagnostic molecular markers for this type of cancer. By comparing protein spots from gliomas and non-tumor tissues using two-dimensional (2D) gel electrophoresis, we identified 11 up-regulated proteins and four down-regulated proteins in gliomas. Interestingly, we also discovered that a group of cytoskeleton-related proteins are differentially regulated in gliomas, suggesting the involvement of cytoskeleton modulation in glioma pathogenesis. We then focused on the cytoskeleton-related protein, SIRT2 (sirtuin homologue 2) tubulin deacetylase, which was down-regulated in gliomas. SIRT2 is located at 19q13.2, a region known to be frequently deleted in human gliomas. Subsequent Northern blot analysis revealed that RNA expression of SIRT2 was dramatically diminished in 12 out of 17 gliomas and glioma cell lines, in agreement with proteomic data. Furthermore, ectopic expression of SIRT2 in glioma cell lines led to the perturbation of the microtubule network and caused a remarkable reduction in the number of stable clones expressing SIRT2 as compared to that of a control vector in colony formation assays. These results suggest that SIRT2 may act as a tumor suppressor gene in human gliomas possibly through the regulation of microtubule network and may serve as a novel molecular marker for gliomas. Additional proteins were also identified, whose function in gliomas was previously unsuspected.  相似文献   

16.
A series of allelic mutations in the tumor suppressor Brca1 have been created to study mechanisms underlying BRCA1-associated tumorigenesis. Brca1 is essential in maintaining genome integrity through its involvement in DNA damage repair, G(2)-M cell-cycle checkpoint and centrosome duplication. The loss of Brca1 is not sufficient for malignant transformation, rather, it triggers multiple genetic alterations, including the inactivation of p53 and activation of a number of oncogenes, that ultimately result in mammary tumorigenesis.  相似文献   

17.
The scaffold protein Spinophilin (SPN) is a regulatory subunit of phosphatase1a located at 17q21.33. This region is frequently associated with microsatellite instability and LOH containing a relatively high density of known tumor suppressor genes, including BRCA1. Several linkage studies have suggested the existence of an unknown tumor suppressor gene distal to BRCA1. Spn may be this gene, but the mechanism through which this gene makes its contribution to cancer has not been described. In this study, we aimed to determine how loss of Spn may contribute to tumorigenesis. We explored the contribution of SPN to PP1a-mediated Rb regulation. We found that the loss of Spn downregulated PPP1CA and PP1a activity, resulting in a high level of phosphorylated Rb and increased ARF and p53 activity. However, in the absence of p53, reduced levels of SPN enhanced the tumorigenic potential of the cells. Furthermore, the ectopic expression of SPN in human tumor cells greatly reduced cell growth. Taken together, our results demonstrate that the loss of Spn induces a proliferative response by increasing Rb phosphorylation, which, in turn, activates p53, thereby neutralizing the proliferative response. We suggest that Spn may be the tumor suppressor gene located at 17q21.33 acting through Rb regulation.  相似文献   

18.
19.
SIRT1 is a mammalian NAD+-dependent histone deacetylase implicated in metabolism, development, aging and tumorigenesis. Prior studies that examined the effect of enterocyte-specific overexpression and global deletion of SIRT1 on polyp formation in the intestines of APC+/min mice, a commonly used model for intestinal tumorigenesis, yielded conflicting results, supporting either tumor-suppressive or tumor-promoting roles for SIRT1, respectively. In order to resolve the controversy emerging from these prior in vivo studies, in the present report we examined the effect of SIRT1 deficiency confined to the intestines, avoiding the systemic perturbations such as growth retardation seen with global SIRT1 deletion. We crossed APC+/min mice with mice bearing enterocyte-specific inactivation of SIRT1 and examined polyp development in the progeny. We found that SIRT1-inactivation reduced total polyp surface (9.3 mm2 vs. 23.3 mm2, p = 0.01), average polyp size (0.24 mm2 vs. 0.51 mm2, p = 0.005) and the number of polyps >0.5 mm in diameter (14 vs. 23, p = 0.04), indicating that SIRT1 affects both the number and size of tumors. Additionally, tumors in SIRT1-deficient mice exhibited markedly increased numbers of cells undergoing apoptosis, suggesting that SIRT1 contributes to tumor growth by enabling survival of tumor cells. Our results indicate that SIRT1 acts as a tumor promoter in the APC+/min mouse model of intestinal tumorigenesis.  相似文献   

20.
Chen WY  Wang DH  Yen RC  Luo J  Gu W  Baylin SB 《Cell》2005,123(3):437-448
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号