共查询到20条相似文献,搜索用时 17 毫秒
1.
2.
Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis 总被引:31,自引:0,他引:31
Daugas E Nochy D Ravagnan L Loeffler M Susin SA Zamzami N Kroemer G 《FEBS letters》2000,476(3):118-123
Apoptosis-inducing factor (AIF) is encoded by one single gene located on the X chromosome. AIF is ubiquitously expressed, both in normal tissues and in a variety of cancer cell lines. The AIF precursor is synthesized in the cytosol and is imported into mitochondria. The mature AIF protein, a flavoprotein (prosthetic group: flavine adenine dinucleotide) with significant homology to plant ascorbate reductases and bacterial NADH oxidases, is normally confined to the mitochondrial intermembrane space. In a variety of different apoptosis-inducing conditions, AIF translocates through the outer mitochondrial membrane to the cytosol and to the nucleus. Ectopic (extra-mitochondrial) AIF induces nuclear chromatin condensation, as well as large scale ( approximately 50 kb) DNA fragmentation. Thus, similar to cytochrome c, AIF is a phylogenetically old, bifunctional protein with an electron acceptor/donor (oxidoreductase) function and a second apoptogenic function. In contrast to cytochrome c, however, AIF acts in a caspase-independent fashion. The molecular mechanisms via which AIF induces apoptosis are discussed. 相似文献
3.
Arnaud Parcellier Lionel A. Tintignac Elena Zhuravleva Peter Cron Susanne Schenk Lana Bozulic Brian A. Hemmings 《Cellular signalling》2009,21(4):639-650
The Carboxy-Terminal Modulator Protein (CTMP) protein was identified as a PKB inhibitor that binds to its hydrophobic motif. Here, we report mitochondrial localization of endogenous and exogenous CTMP. CTMP exhibits a dual sub-mitochondrial localization as a membrane-bound pool and a free pool of mature CTMP in the inter-membrane space. CTMP is released from the mitochondria into the cytosol early upon apoptosis. CTMP overexpression is associated with an increase in mitochondrial membrane depolarization and caspase-3 and polyADP-ribose polymerase (PARP) cleavage. In contrast, CTMP knock-down results in a marked reduction in the loss of mitochondrial membrane potential as well as a decrease in caspase-3 and PARP activation. Mutant CTMP retained in the mitochondria loses its capacity to sensitize cells to apoptosis. Thus, proper maturation of CTMP is essential for its pro-apoptotic function. Finally, we demonstrate that CTMP delays PKB phosphorylation following cell death induction, suggesting that CTMP regulates apoptosis via inhibition of PKB. 相似文献
4.
5.
Takamura A Higaki K Kajimaki K Otsuka S Ninomiya H Matsuda J Ohno K Suzuki Y Nanba E 《Biochemical and biophysical research communications》2008,367(3):616-622
GM1-gangliosidosis is an autosomal recessive lysosomal lipid storage disorder, caused by mutations of the lysosomal β-galactosidase (β-gal) and results in the accumulation of GM1. The underlying mechanisms of neurodegeneration are poorly understood. Here we demonstrate increased autophagy in β-gal-deficient (β-gal−/−) mouse brains as evidenced by elevation of LC3-II and beclin-1 levels. Activation of autophagy in the β-gal−/− brain was found to be accompanied with enhanced Akt-mTOR and Erk signaling. In addition, the mitochondrial cytochrome c oxidase activity was significantly decreased in brains and cultured astrocytes from β-gal−/− mouse. Mitochondria isolated from β-gal−/− astrocytes were morphologically abnormal and had a decreased membrane potential. These cells were more sensitive to oxidative stress than wild type cells and this sensitivity was suppressed by ATP, an autophagy inhibitor 3-methyladenine and a pan-caspase inhibitor z-VAD-fmk. These results suggest activation of autophagy leading to mitochondrial dysfunction in the brain of GM1-gangliosidosis. 相似文献
6.
Oncostatin M (OSM) protects against cardiac ischaemia/reperfusion injury in diabetic mice by regulating apoptosis,mitochondrial biogenesis and insulin sensitivity 下载免费PDF全文
Xiaotian Zhang Liping Wei Xing Qin Erhe Gao 《Journal of cellular and molecular medicine》2015,19(6):1296-1307
Oncostatin M (OSM) exhibits many unique biological activities by activating Oβ receptor. However, its role in myocardial I/R injury in diabetic mice remains unknown. The involvement of OSM was assessed in diabetic mice which underwent myocardial I/R injury by OSM treatment or genetic deficiency of OSM receptor Oβ. Its mechanism on cardiomyocyte apoptosis, mitochondrial biogenesis and insulin sensitivity were further studied. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through inhibition of inositol pyrophosphate 7 (IP7) production, thus activating PI3K/Akt/BAD pathway, decreasing Bax expression while up‐regulating Bcl‐2 expression and decreasing the ratio of Bax to Bcl‐2 in db/db mice. OSM enhanced mitochondrial biogenesis and mitochondrial function in db/db mice subjected to cardiac I/R injury. On the contrary, OSM receptor Oβ knockout exacerbated cardiac I/R injury, increased IP7 production, enhanced cardiomyocyte apoptosis, impaired mitochondrial biogenesis, glucose homoeostasis and insulin sensitivity in cardiac I/R injured diabetic mice. Inhibition of IP7 production by TNP (IP6K inhibitor) exerted similar effects of OSM. The mechanism of OSM on cardiac I/R injury in diabetic mice is partly associated with IP7/Akt and adenine mononucleotide protein kinase/PGC‐1α pathway. OSM protects against cardiac I/R Injury by regulating apoptosis, insulin sensitivity and mitochondrial biogenesis in diabetic mice through inhibition of IP7 production. 相似文献
7.
Photodynamic therapy: a mitochondrial inducer of apoptosis 总被引:18,自引:0,他引:18
Photodamage to the mitochondria of murine leukemia P388 cells resulted in immediate loss of the mitochondrial membrane potential together with the release of cytochrome c into the cytosol. This was followed by a rapid activation of caspase 3-like proteases, as indicated by a marked rise in DEVDase activity. There was no significant effect on WEHDase or VEIDase activities, suggesting that only the late-stage caspases had been effected. The apoptotic response to mitochondrial photodamage was abolished by the broad-spectrum caspase inhibitor zVAD-fmk, but this did not prevent loss of viability after mitochondrial photodamage. These studies indicate that the release of cytochrome c from photodamaged mitochondria is sufficient to directly initiate a caspase-dependent apoptotic response. 相似文献
8.
Stefan U. Weber Andreas Koch Jens Kankeleit Jens-Christian Schewe Ullrich Siekmann Frank Stüber Andreas Hoeft Stefan Schröder 《Apoptosis : an international journal on programmed cell death》2009,14(1):97-107
During therapeutic hyperbaric oxygenation lymphocytes are exposed to high partial pressures of oxygen. This study aimed to
analyze the mechanism of apoptosis induction by hyperbaric oxygen. For intervals of 0.5–4 h Jurkat-T-cells were exposed to
ambient air or oxygen atmospheres at 1–3 absolute atmospheres. Apoptosis was analyzed by phosphatidylserine externalization,
caspase-3 activation and DNA-fragmentation using flow cytometry. Apoptosis was already induced after 30 min of hyperbaric
oxygenation (HBO, P < 0.05). The death receptor Fas was downregulated. Inhibition of caspase-9 but not caspase-8 blocked apoptosis induction
by HBO. Hyperbaric oxygen caused a loss of mitochondrial membrane potential and caspase-9 induction. The mitochondrial pro-survival
protein Bcl-2 was upregulated, and antagonizing Bcl-2 function potentiated apoptosis induction by HBO. In conclusion, a single
exposure to hyperbaric oxygenation induces lymphocyte apoptosis by a mitochondrial and not a Fas-related mechanism. Regulation
of Fas and Bcl-2 may be regarded as protective measures of the cell in response to hyperbaric oxygen. 相似文献
9.
10.
Mitochondrial dysfunction and dysregulation of apoptosis are implicated in many diseases such as cancer and neurodegeneration. We investigate here the role of respiratory chain (RC) dysfunction in apoptosis, using mitochondrial DNA mutations as genetic models. Although some mutations eliminate the entire RC, others target specific complexes, resulting in either decreased or complete loss of electron flux, which leads to impaired respiration and adenosine triphosphate (ATP) synthesis. Despite these similarities, significant differences in responses to apoptotic stimuli emerge. Cells lacking RC are protected against both mitochondrial- and endoplasmic reticulum (ER) stress–induced apoptosis. Cells with RC, but unable to generate electron flux, are protected against mitochondrial apoptosis, although they have increased sensitivity to ER stress. Finally, cells with a partial reduction in electron flux have increased apoptosis under both conditions. Our results show that the RC modulates apoptosis in a context-dependent manner independent of ATP production and that apoptotic responses are the result of the interplay between mitochondrial functional state and environmental cues. 相似文献
11.
Designed heterodimerizing leucine zippers with a ranger of pIs and stabilities up to 10(-15) M 下载免费PDF全文
Moll JR Ruvinov SB Pastan I Vinson C 《Protein science : a publication of the Protein Society》2001,10(3):649-655
We have designed a heterodimerizing leucine zipper system to target a radionuclide to prelocalized noninternalizing tumor-specific antibodies. The modular nature of the leucine zipper allows us to iteratively use design rules to achieve specific homodimer and heterodimer affinities. We present circular-dichroism thermal denaturation measurements on four pairs of heterodimerizing leucine zippers. These peptides are 47 amino acids long and contain four or five pairs of electrostatically attractive g <--> e' (i, i' +5) interhelical heterodimeric interactions. The most stable heterodimer consists of an acidic leucine zipper and a basic leucine zipper that melt as homodimers in the micro (T(m) = 28 degrees C) or nanomolar (T(m) = 40 degrees C) range, respectively, but heterodimerize with a T(m) >90 degrees C, calculated to represent femtamolar affinities. Modifications to this pair of acidic and basic zippers, designed to destabilize homodimerization, resulted in peptides that are unstructured monomers at 4 microM and 6 degrees C but that heterodimerize with a T(m) = 74 degrees C or K(d(37)) = 1.1 x 10(-11) M. A third heterodimerizing pair was designed to have a more neutral isoelectric focusing point (pI) and formed a heterodimer with T(m) = 73 degrees C. We can tailor this heterodimerizing system to achieve pharmacokinetics aimed at optimizing targeted killing of cancer cells. 相似文献
12.
Analyzing mitochondrial changes during apoptosis 总被引:17,自引:0,他引:17
Mitochondria play a central role in programmed cell death through the release of cytochrome c and other proapoptotic factors. Fluorescence microscopy is used to visualize cytochrome c translocation and loss of mitochondrial membrane potential. Flow cytometry can also be used to measure mitochondrial membrane potential. Cytochrome c content in cytosol and mitochondria can be determined by immunoblotting after subcellular fractionation or selective permeabilization with digitonin. Isolated mitochondria can be used to study the mechanism of cytochrome c release. This article summarizes some of the more widely used methods to assess mitochondrial alterations in apoptosis. 相似文献
13.
Li N Ragheb K Lawler G Sturgis J Rajwa B Melendez JA Robinson JP 《Free radical biology & medicine》2003,34(4):465-477
The iodonium compounds diphenyleneiodonium (DPI) and diphenyliodonium (IDP) are well-known phagocyte NAD(P)H oxidase inhibitors. However, it has been shown that at high concentrations they can inhibit the mitochondrial respiratory chain as well. Since inhibition of the mitochondrial respiratory chain has been shown to induce superoxide production and apoptosis, we investigated the effect of iodonium compounds on mitochondria-derived superoxide and apoptosis. Mitochondrial superoxide production was measured on both cultured cells and isolated rat-heart submitochondrial particles. Mitochondria function was examined by monitoring mitochondrial membrane potential. Apoptotic pathways were studied by measuring cytochrome c release and caspase 3 activation. Apoptosis was characterized by detecting DNA fragmentation on agarose gel and measuring propidium iodide- (PI-) stained subdiploid cells using flow cytometry. Our results showed that DPI could induce mitochondrial superoxide production. The same concentration of DPI induced apoptosis by decreasing mitochondrial membrane potential and releasing cytochrome c. Addition of antioxidants or overexpression of MnSOD significantly reduced DPI-induced mitochondrial damage, cytochrome c release, caspase activation, and apoptosis. These observations suggest that DPI can induce apoptosis via induction of mitochondrial superoxide. DPI-induced mitochondrial superoxide production may prove to be a useful model to study the signaling pathways of mitochondrial superoxide. 相似文献
14.
Throughout the process of pathogen-host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus. 相似文献
15.
We synthesized a water soluble Fe(III)-salen complex and investigated its biochemical effects on DNA in vitro and on cultured human cells. We showed that Fe(III)-salen produces free radicals in the presence of reducing agent dithiothreitol (DTT) and induces DNA damage in vitro. Interestingly, upon treatment with Fe(III)-salen at concentration as low as 10microM, HEK293 human cells showed morphological changes, nuclear fragmentation, and nuclear condensation that are typical features of apoptotic cell death. The cytotoxicity measurement showed that IC(50) of Fe(III)-salen is 2.0microM for HEK293 cells. Furthermore, treatment with Fe(III)-salen resulted in translocation of cytochrome c from mitochondria to cytosol affecting mitochondrial membrane permeability. Our results demonstrated that Fe(III)-salen not only damages DNA in vitro, but also induces apoptosis in human cells via mitochondrial pathway. 相似文献
16.
《Bioorganic & medicinal chemistry letters》2020,30(16):127340
Tracking of drugs in cancer cells is important for basic biology research and therapeutic applications. Therefore, we designed and synthesised a Zn(II)-thiosemicarbazone complex with photoluminescent property for organelle-specific imaging and anti-cancer proliferation. The Zn(AP44eT)(NO3)2 coordination ratio of metal to ligand was 1:1, which was remarkably superior to 2-((3-aminopyridin-2-yl) methylene)-N, N-diethylhydrazinecarbothioamide (AP44eT·HCl) in many aspects, such as fluorescence and anti-tumour activity. Confocal fluorescence imaging showed that the Zn(AP44eT)(NO3)2 was aggregated in mitochondria. Moreover, Zn(AP44eT)(NO3)2 was more effective than the metal-free AP44eT·HCl in shortening the G2 phase in the MCF-7 cell cycle and promoting apoptosis of cancer cells. Supposedly, the effects of these complexes might be located mainly in the mitochondria and activated caspase-3 and 9 proteins. 相似文献
17.
Epperly MW Sikora CA DeFilippi SJ Gretton JA Zhan Q Kufe DW Greenberger JS 《Radiation research》2002,157(5):568-577
To define the molecular pathways involved in radiation-induced apoptosis and the role of the mitochondria, 32D cl 3 hematopoietic cells and subclones overexpressing either the human manganese superoxide dismutase (SOD2) transgene (1F2 and 2C6) or BCL2L1 (also known as Bcl-xl) transgene (32D-Bcl-xl) were compared for their response to radiation at the subcellular level, comparing nuclear to mitochondrial localized pathways. All cell lines showed complete detectable DNA repair by 30 min after irradiation, and clearly delayed migration of BAX and active stress-activated protein (SAP) kinases MAPK1 (also known as p38) and MAPK8 (also known as JNK1) to the mitochondria at 3 h. Radioresistant clonal lines 1F2, 2C6 and 32D-Bcl-xl showed significant decreases in mitochondrial membrane permeability, cytochrome C release, caspase 3 and poly(adenosine diphosphate-ribose) polymerase (PARP) activation at 6-12 h, and in apoptosis at 24 h. Since the nuclear-to-cytoplasm events preceding the release of cytochrome C were similar in all cell lines, and increased expression of either the SOD2 or the BCL2L1 transgene provided radiation protection, we conclude that events at the level of the mitochondria are critically involved in radiation-induced apoptosis. 相似文献
18.
Cheng Zhang Shang-Hai Lai Chuan-Chuan Zeng Bing Tang Dan Wan De-Gang Xing Yun-Jun Liu 《Journal of biological inorganic chemistry》2016,21(8):1047-1060
A new ligand BTCP and its iridium(III) complex [Ir(ppy)2(BTCP)]PF6 (Ir-1) were synthesized and characterized by elemental analysis, ESI–MS, IR, 1H NMR and 13C NMR. The cytotoxic activity in vitro of the ligand and its complex against SGC-7901, HeLa, HOS, PC-12, BEL-7402, MG-63, SiHa, A549, HepG2 and normal cell LO2 were evaluated by MTT method [MTT = (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)]. The apoptosis was assayed with AO/EB and Hoechst 33258 staining methods. The reactive oxygen species (ROS), mitochondrial membrane potential, autophagy and cell invasion were studied under fluorescent microscope. The expression of caspases and Bcl-2 family proteins were investigated by western blot. The IC50 values of complex toward SGC-7901, BEL-7402 and MG-63 cells are 3.9 ± 0.5, 5.4 ± 1.2 and 4.2 ± 0.6 µM. The complex can increase the levels of ROS, and induce a decrease in the mitochondrial membrane potential. Ir-1 inhibits the cell growth at G0/G1 phase in SGC-7901 cells, and the complex can induce both autophagy and apoptosis and inhibit the cell invasion. And the complex induces apoptosis through a ROS-mediated mitochondrial dysfunction pathway. 相似文献
19.
Chelerythrine induces apoptosis through a Bax/Bak-independent mitochondrial mechanism 总被引:2,自引:0,他引:2
Wan KF Chan SL Sukumaran SK Lee MC Yu VC 《The Journal of biological chemistry》2008,283(13):8423-8433
Although murine embryonic fibroblasts (MEFs) with Bax or Bak deleted displayed no defect in apoptosis signaling, MEFs with Bax and Bak double knock-out (DKO) showed dramatic resistance to diverse apoptotic stimuli, suggesting that Bax and Bak are redundant but essential regulators for apoptosis signaling. Chelerythrine has recently been identified as a Bcl-xL inhibitor that is capable of triggering apoptosis via direct action on mitochondria. Here we report that in contrast to classic apoptotic stimuli, chelerythrine is fully competent in inducing apoptosis in the DKO MEFs. Wild-type and DKO MEFs are equally sensitive to chelerythrine-induced morphological and biochemical changes associated with apoptosis phenotype. Interestingly, chelerythrine-mediated release of cytochrome c is rapid and precedes Bax translocation and integration. Although the BH3 peptide of Bim is totally inactive in releasing cytochrome c from isolated mitochondria of DKO MEFs, chelerythrine maintains its potency and efficacy in inducing direct release of cytochrome c from these mitochondria. Furthermore, chelerythrine-mediated mitochondrial swelling and loss in mitochondrial membrane potential (DeltaPsi(m)) are inhibited by cyclosporine A, suggesting that mitochondrial permeability transition pore is involved in chelerythrine-induced apoptosis. Although certain apoptotic stimuli have been shown to elicit cytotoxic effect in the DKO MEFs through alternate death mechanisms, chelerythrine does not appear to engage necrotic or autophagic death mechanism to trigger cell death in the DKO MEFs. These results, thus, argue for the existence of an alternative Bax/Bak-independent apoptotic mechanism that involves cyclosporine A-sensitive mitochondrial membrane permeability. 相似文献
20.
Cardiolipin (CL) is a unique anionic phospholipid specific to the mitochondria. CL influences the activity of electron transport chain enzyme complexes as well as members of the Bcl-2 family. Interactions between Bcl-2 family members and other pro-apoptotic enzymes have been shown to be crucial for the transduction of the apoptotic signalling cascades during programmed cell death. Targeting of tBid to the mitochondria, which is necessary for Bax/Bak oligomerization and cristae remodelling, is dependent on the exposure of CL at contact sites between the inner and outer mitochondrial membranes. Also, the mobilization of cytochrome c, another key apoptotic event, is tightly regulated by the oxidative state of cardiolipin. Moreover, CL has been shown to be essential for translocation and autoprocessing of caspase-8 on the mitochondria after death receptor stimulation. Deficiencies in CL inhibit the formation of tBid and prevent apoptosis by removing an essential activation platform for the autoprocessing of caspase-8. It is now apparent that CL acts as a crucial signalling platform from which it orchestrates apoptosis by integrating signals from a variety of death inducing proteins. 相似文献