首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
FLIGHT (http://flight.icr.ac.uk/) is an online resource compiling data from high-throughput Drosophila in vivo and in vitro RNAi screens. FLIGHT includes details of RNAi reagents and their predicted off-target effects, alongside RNAi screen hits, scores and phenotypes, including images from high-content screens. The latest release of FLIGHT is designed to enable users to upload, analyze, integrate and share their own RNAi screens. Users can perform multiple normalizations, view quality control plots, detect and assign screen hits and compare hits from multiple screens using a variety of methods including hierarchical clustering. FLIGHT integrates RNAi screen data with microarray gene expression as well as genomic annotations and genetic/physical interaction datasets to provide a single interface for RNAi screen analysis and datamining in Drosophila.Key words: RNAi, database, integration, bioinformatics, phenotype  相似文献   

2.
3.
The discovery of RNA interference (RNAi) and the development of technologies exploiting its biology have enabled scientists to rapidly examine the consequences of depleting a particular gene product in a cell or an animal. The availability of genome-wide RNAi libraries targeting the mouse and human genomes has made it possible to carry out large scale, phenotype-based screens, which have yielded seminal information on diverse cellular processes ranging from virology to cancer biology. Today, several strategies are available to perform RNAi screens, each with their own technical and monetary considerations. Special care and budgeting must be taken into account during the design of these screens in order to obtain reliable results. In this review, we discuss a number of critical aspects to consider when planning an effective RNAi screening strategy, including selecting the right biological system, designing an appropriate selection scheme, optimizing technical aspects of the screen, and validating and verifying the hits. Similar to an artistic production, what happens behind the screen has a direct impact on its success.  相似文献   

4.
Neuronal circuit development and function require proper synapse formation and maintenance. Genetic screens are one powerful method to identify the mechanisms shaping synaptic development and stability. However, genes with essential roles in non-neural tissues may be missed in traditional loss-of-function screens. In an effort to circumvent this limitation, we used neuron-specific RNAi knock down in Drosophila and assayed the formation, growth, and maintenance of the neuromuscular junction (NMJ). We examined 1970 Drosophila genes, each of which has a conserved ortholog in mammalian genomes. Knock down of 158 genes in post-mitotic neurons led to abnormalities in the neuromuscular system, including misapposition of active zone components opposite postsynaptic glutamate receptors, synaptic terminal overgrowth and undergrowth, abnormal accumulation of synaptic material within the axon, and retraction of synaptic terminals from their postsynaptic targets. Bioinformatics analysis demonstrates that genes with overlapping annotated function are enriched within the hits for each phenotype, suggesting that the shared biological function is important for that aspect of synaptic development. For example, genes for proteasome subunits and mitotic spindle organizers are enriched among the genes whose knock down leads to defects in synaptic apposition and NMJ stability. Such genes play essential roles in all cells, however the use of tissue- and temporally-restricted RNAi indicates that the proteasome and mitotic spindle organizers participate in discrete aspects of synaptic development. In addition to identifying functional classes of genes shaping synaptic development, this screen also identifies candidate genes whose role at the synapse can be validated by traditional loss-of-function analysis. We present one such example, the dynein-interacting protein NudE, and demonstrate that it is required for proper axonal transport and synaptic maintenance. Thus, this screen has identified both functional classes of genes as well as individual candidate genes that are critical for synaptic development and will be a useful resource for subsequent mechanistic analysis of synapse formation and maintenance.  相似文献   

5.
RNAi screening using pooled shRNA libraries is a valuable tool for identifying genetic regulators of biological processes. However, for a successful pooled shRNA screen, it is imperative to thoroughly optimize experimental conditions to obtain reproducible data. Here we performed viability screens with a library of ~10 000 shRNAs at two different fold representations (100- and 500-fold at transduction) and report the reproducibility of shRNA abundance changes between screening replicates determined by microarray and next generation sequencing analyses. We show that the technical reproducibility between PCR replicates from a pooled screen can be drastically improved by ensuring that PCR amplification steps are kept within the exponential phase and by using an amount of genomic DNA input in the reaction that maintains the average template copies per shRNA used during library transduction. Using these optimized PCR conditions, we then show that higher reproducibility of biological replicates is obtained by both microarray and next generation sequencing when screening with higher average shRNA fold representation. shRNAs that change abundance reproducibly in biological replicates (primary hits) are identified from screens performed with both 100- and 500-fold shRNA representation, however a higher percentage of primary hit overlap between screening replicates is obtained from 500-fold shRNA representation screens. While strong hits with larger changes in relative abundance were generally identified in both screens, hits with smaller changes were identified only in the screens performed with the higher shRNA fold representation at transduction.  相似文献   

6.
The development of advanced functional genomic tools has paved the way for systematic investigations of biological processes in health and disease. In particular, the implementation of RNA interference (RNAi) as a genome-wide, loss-of-function screening tool has enabled scientists to probe the role for every gene in cellular assays and many new factors for various processes have been discovered employing RNAi screens in recent years. However, the results also demonstrate the complexity of biological systems and indicate that we are still a long way from understanding functional networks in depth. Nevertheless, RNAi screens present a powerful method to interrogate gene function in high-throughput and different methods to elicit RNAi in mammalian cells have been developed. Here, we describe steps that should be considered when planning an RNAi screen employing endoribonuclease prepared (e)siRNAs. We provide useful information on how to implement the screen and analyze the results. Furthermore, we discuss strategies for hit validation and present an outline on how to follow-up on verified hits to gain a molecular understanding of the underlying phenotypes.  相似文献   

7.
Several RNAi screens were performed in search for regulators of the secretory pathway. These screens were performed in different organisms and cell lines and relied on different readouts. Therefore, they have only little overlap among their hits, leading to the question of what we have learned from this approach so far and how these screens contributed towards an integrative understanding of the endomembrane system. The aim of this review is to revisit these screens and discuss their strengths and weaknesses as well as potential reasons for their failure to overlap with each other. As with secretory trafficking, RNAi screens were also performed on other cellular processes such as cell migration and autophagy, both of which were shown to be intimately linked to secretion. Another aim of this review is to compare the outcome of the RNAi screens on secretion, autophagy and cell migration and ask whether the functional genomic approaches have uncovered potential mechanistic insights into the links between these processes.  相似文献   

8.

Background  

The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2.  相似文献   

9.
Recent technological advances in microscopy have enabled cell-based whole genome screens, but the analysis of the vast amount of image data generated by such screens usually proves to be rate limiting. In this study, we performed a whole genome RNA interference (RNAi) screen to uncover genes that affect spreading of Drosophila melanogaster S2 cells using several computational methods for analyzing the image data in an automated manner. Expected genes in the Scar-Arp2/3 actin nucleation pathway were identified as well as casein kinase I, which had a similar morphological RNAi signature. A distinct nonspreading morphological phenotype was identified for genes involved in membrane secretion or synthesis. In this group, we identified a new secretory peptide and investigated the functions of two poorly characterized endoplasmic reticulum proteins that have roles in secretion. Thus, this genome-wide screen succeeded in identifying known and unexpected proteins that are important for cell spreading, and the computational tools developed in this study should prove useful for other types of automated whole genome screens.  相似文献   

10.
11.
RNA interference (RNAi) has emerged as one of the most powerful tools for functionally characterizing large sets of genomic data. Capabilities of RNAi place it at the forefront of high-throughput screens, which are able to span the human genome in search of novel targets. Although RNAi screens have been used to elucidate pathway components and discover potential drug targets in lower organisms, including Caenorhabditis elegans and Drosophila, only recently has the technology been advanced to a state in which large-scale screens can be performed in mammalian cells. In this review, we will evaluate the major advancements in the field of mammalian RNAi, specifically in terms of high-throughput assays. Crucial points of experimental design will be highlighted, as well as suggestions as to how to interpret and follow-up on potential cell death targets. Finally, we assess the prospective applications of high-throughput screens, the data they are capable of generating, and the potential for this technique to further our understanding of human disease.  相似文献   

12.
Recently, the issue of off-target effects (OTEs) associated with long double stranded RNAs (dsRNAs) used in RNAi screens, such as those performed at the Drosophila RNAi Screening Center and other laboratories, has become a focus of great interest and some concern. Although OTEs have been recognized as an important source of false positives in mammalian studies (where short siRNAs are used as triggers), they were generally thought to be inconsequential in Drosophila RNAi experiments because of the use of long dsRNAs. Two recent papers have disputed this contention and show that significant off-target effects can take place with the use of some long dsRNAs in Drosophila cells. Together, these studies provide evidence that OTEs mediated by short homology stretches of 19nt or greater within long dsRNAs can contribute to false positives in Drosophila RNAi screens. Here, we address how widespread the occurrence of OTE is in Drosophila screens, focusing on the DRSC dsRNA collections, and we discuss the implication for the interpretation of results reported in RNAi screens to-date. Lastly, we summarize steps taken by the DRSC to redress that situation and include a set of recommendations to observe in future RNAi screens.  相似文献   

13.
To enable arrayed or pooled loss-of-function screens in a wide range of mammalian cell types, including primary and nondividing cells, we are developing lentiviral short hairpin RNA (shRNA) libraries targeting the human and murine genomes. The libraries currently contain 104,000 vectors, targeting each of 22,000 human and mouse genes with multiple sequence-verified constructs. To test the utility of the library for arrayed screens, we developed a screen based on high-content imaging to identify genes required for mitotic progression in human cancer cells and applied it to an arrayed set of 5,000 unique shRNA-expressing lentiviruses that target 1,028 human genes. The screen identified several known and approximately 100 candidate regulators of mitotic progression and proliferation; the availability of multiple shRNAs targeting the same gene facilitated functional validation of putative hits. This work provides a widely applicable resource for loss-of-function screens, as well as a roadmap for its application to biological discovery.  相似文献   

14.
Centrosomes comprise a pair of centrioles surrounded by an amorphous pericentriolar material (PCM). Here, we have performed a microscopy-based genome-wide RNA interference (RNAi) screen in Drosophila cells to identify proteins required for centriole duplication and mitotic PCM recruitment. We analysed 92% of the Drosophila genome (13,059 genes) and identified 32 genes involved in centrosome function. An extensive series of secondary screens classified these genes into four categories: (1) nine are required for centriole duplication, (2) 11 are required for centrosome maturation, (3) nine are required for both functions, and (4) three genes regulate centrosome separation. These 32 hits include several new centrosomal components, some of which have human homologs. In addition, we find that the individual depletion of only two proteins, Polo and Centrosomin (Cnn) can completely block centrosome maturation. Cnn is phosphorylated during mitosis in a Polo-dependent manner, suggesting that the Polo-dependent phosphorylation of Cnn initiates centrosome maturation in flies.  相似文献   

15.
16.
The availability of genome-wide RNAi libraries has enabled researchers to rapidly assess the functions of thousands of genes; however the fact that these screens are run in living biological systems add complications above and beyond that normally seen in high-throughput screening (HTS). Specifically, error due to variance in both measurement and biology are large in such screens, leading to the conclusion that the majority of "hits" are expected to be false positives. Here, we outline basic guidelines for screen development that will help the researcher to control these forms of variance. By running a large number of positive and negative control genes, error of measurement can be accurately estimated and false negatives reduced. Likewise, by using a complex readout for the screen which is not easily mimicked by other biological pathways and phenomena, false positives can be minimized. By controlling variance in these ways, the researcher can maximize the utility of genome-wide RNAi screening.  相似文献   

17.
18.
The small GTPase RAS is among the most prevalent oncogenes. The evolutionarily conserved RAF-MEK-MAPK module that lies downstream of RAS is one of the main conduits through which RAS transmits proliferative signals in normal and cancer cells. Genetic and biochemical studies conducted over the last two decades uncovered a small set of factors regulating RAS/MAPK signaling. Interestingly, most of these were found to control RAF activation, thus suggesting a central regulatory role for this event. Whether additional factors are required at this level or further downstream remains an open question. To obtain a comprehensive view of the elements functionally linked to the RAS/MAPK cascade, we used a quantitative assay in Drosophila S2 cells to conduct a genome-wide RNAi screen for factors impacting RAS-mediated MAPK activation. The screen led to the identification of 101 validated hits, including most of the previously known factors associated to this pathway. Epistasis experiments were then carried out on individual candidates to determine their position relative to core pathway components. While this revealed several new factors acting at different steps along the pathway—including a new protein complex modulating RAF activation—we found that most hits unexpectedly work downstream of MEK and specifically influence MAPK expression. These hits mainly consist of constitutive splicing factors and thereby suggest that splicing plays a specific role in establishing MAPK levels. We further characterized two representative members of this group and surprisingly found that they act by regulating mapk alternative splicing. This study provides an unprecedented assessment of the factors modulating RAS/MAPK signaling in Drosophila. In addition, it suggests that pathway output does not solely rely on classical signaling events, such as those controlling RAF activation, but also on the regulation of MAPK levels. Finally, it indicates that core splicing components can also specifically impact alternative splicing.  相似文献   

19.
Genome-wide RNA interference (RNAi) screening allows investigation of the role of individual genes in a process of choice. Most RNAi screens identify a large number of genes with a continuous gradient in the assessed phenotype. Screeners must decide whether to examine genes with the most robust phenotype or the full gradient of genes that cause an effect and how to identify candidate genes. The authors have used RNAi in Drosophila cells to examine viability in a 384-well plate format and compare 2 screens, untreated control and treatment. They compare multiple normalization methods, which take advantage of different features within the data, including quantile normalization, background subtraction, scaling, cellHTS2 (Boutros et al. 2006), and interquartile range measurement. Considering the false-positive potential that arises from RNAi technology, a robust validation method was designed for the purpose of gene selection for future investigations. In a retrospective analysis, the authors describe the use of validation data to evaluate each normalization method. Although no method worked ideally, a combination of 2 methods, background subtraction followed by quantile normalization and cellHTS2, at different thresholds, captures the most dependable and diverse candidate genes. Thresholds are suggested depending on whether a few candidate genes are desired or a more extensive systems-level analysis is sought. The normalization approaches and experimental design to perform validation experiments are likely to apply to those high-throughput screening systems attempting to identify genes for systems-level analysis.  相似文献   

20.
To facilitate the genetic analysis of muscle assembly and maintenance, we have developed a method for efficient RNA interference (RNAi) in Drosophila primary cells using double-stranded RNAs (dsRNAs). First, using molecular markers, we confirm and extend the observation that myogenesis in primary cultures derived from Drosophila embryonic cells follows the same developmental course as that seen in vivo. Second, we apply this approach to analyze 28 Drosophila homologs of human muscle disease genes and find that 19 of them, when disrupted, lead to abnormal muscle phenotypes in primary culture. Third, from an RNAi screen of 1140 genes chosen at random, we identify 49 involved in late muscle differentiation. We validate our approach with the in vivo analyses of three genes. We find that Fermitin 1 and Fermitin 2, which are involved in integrin-containing adhesion structures, act in a partially redundant manner to maintain muscle integrity. In addition, we characterize CG2165, which encodes a plasma membrane Ca2+-ATPase, and show that it plays an important role in maintaining muscle integrity. Finally, we discuss how Drosophila primary cells can be manipulated to develop cell-based assays to model human diseases for RNAi and small-molecule screens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号