首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundLung adenocarcinomas from patients who respond to the tyrosine kinase inhibitors gefitinib (Iressa) or erlotinib (Tarceva) usually harbor somatic gain-of-function mutations in exons encoding the kinase domain of the epidermal growth factor receptor (EGFR). Despite initial responses, patients eventually progress by unknown mechanisms of “acquired” resistance.ConclusionIn patients with tumors bearing gefitinib- or erlotinib-sensitive EGFR mutations, resistant subclones containing an additional EGFR mutation emerge in the presence of drug. This observation should help guide the search for more effective therapy against a specific subset of lung cancers.  相似文献   

2.
Therapeutic benefits offered by tyrosine kinase inhibitors (TKIs), such as gefitinib (Iressa) and erlotinib (Tarceva), are limited due to the development of resistance, which contributes to treatment failure and cancer-related mortality. The aim of this study was to elucidate mechanistic insight into cellular perturbations that accompany acquired gefitinib resistance in lung cancer cells. Several lung adenocarcinoma (LAD) cell lines were screened to characterize epidermal growth factor receptor (EGFR) expression and mutation profile. To circumvent intrinsic variations between cell lines with respect to response to drug treatments, we generated gefitinib-resistant H1650 clone by long-term, chronic culture under gefitinib selection of parental cell line. Isogenic cells were analyzed by microarray, Western blot, flow cytometry, and confocal and transmission electron microscope. We observed that although chronic gefitinib treatment provided effective action against its primary target (aberrant EGFR activity), secondary effects resulted in increased cellular reactive oxygen species (ROS). Gefitinib-mediated ROS correlated with epithelial-mesenchymal transition, as well as striking perturbation of mitochondrial morphology and function. However, gefitinib treatment in the presence of ROS scavenger provided a partial rescue of mitochondrial aberrations. Furthermore, withdrawal of gefitinib from previously resistant clones correlated with normalized expression of epithelial-mesenchymal transition genes. These findings demonstrate that chronic gefitinib treatment promotes ROS and mitochondrial dysfunction in lung cancer cells. Antioxidants may alleviate ROS-mediated resistance.  相似文献   

3.
Lung cancer is a common cause of cancer mortality in the world, largely due to the risk factor of tobacco smoking. The drug therapy at the molecular level includes targeting the epidermal growth factor receptor (EGFR) tyrosine kinase activity by using inhibitors, such as erlotinib (Tarceva) and gefitinib (Iressa). The heterogeneity of disease phenotypes and the somatic mutations presented in patient populations have a great impact on the efficacy of treatments using targeted personalized medicine. In this study, we report on basic physical and chemical properties of erlotinib and gefitinib in three different lung cancer tumor phenotypes, using MALDI instrumentation in imaging mode, providing spatial localization of drugs without chemical labeling. Erlotinib and gefitinib were analyzed in i) planocellular lung carcinoma, ii) adenocarcinoma and iii) large cell lung carcinoma following their deposition on the tissue surfaces by piezo-dispensing, using a controlled procedure. The importance of high-resolution sampling was crucial in order to accurately localize the EGFR tyrosine kinase inhibitors deposited in heterogeneous cancer tissue compartments. This is the first report on personalized drug characterization with localizations at a lateral resolution of 30μm, which allowed us to map these compounds at attomolar concentrations within the lung tumor tissue microenvironments.  相似文献   

4.
ATP‐analogue inhibitors, Gefitinib (Iressa) and Erlotinib (Tarceva) had been approved for advanced and metastatic nonsmall cell lung cancer (NSCLC) cells against tyrosine kinase domain of epidermal growth factor receptor (EGFR). Many techniques have been developed to better understand the drug mechanism which is multistep, time‐consuming and expensive. Herein, we performed Fourier‐transform infrared (FTIR) microscopy for evaluating the biochemical change on NSCLC (A549) cells after treatment. At levels that produced equivalent effects, Gefitinib dramatically induced cell apoptosis via impaired mitochondrial transmembrane potential. Whereas, Erlotinib had a slight effect on A549. Principal component analysis was performed to distinguish the effect of EGFR inhibitors on A549. FTIR spectra regions were divided into three regions: lipids (3000‐2800 cm?1), proteins (1700‐1500 cm?1) and carbohydrates and nuclei acids (1200‐1000 cm?1). Biochemical changes can be evaluated by these spectral regions. This work may be a novel concept for utilizing FTIR spectroscopy for high‐throughput discriminative effects of a drug or compound and its derivatives on cells.  相似文献   

5.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), a cytokine belonging to the IL-10 family, displays cancer-specific apoptosis-inducing properties when delivered by a replication-incompetent adenovirus (Ad.mda-7) or as a GST-tagged recombinant protein (GST-MDA-7). Previous studies demonstrated that an adenovirus expressing M4, a truncated version of MDA-7/IL-24 containing amino acid residues 104-206, also induced similar cancer-specific apoptosis. We generated recombinant GST-M4 proteins and examined the potency of GST-MDA-7 and GST-M4 on a panel of epidermal growth factor receptor (EGFR) wild type and mutant non-small cell lung carcinoma (NSCLC) cells either as a single agent or in combination with a reversible EGFR inhibitor, Tarceva. The combination of either GST-MDA-7 or GST-M4 ( approximately 0.1 microM) and Tarceva (10 microM), at sub-optimal apoptosis-inducing concentrations synergistically enhanced growth inhibition and apoptosis induction over that observed with either agent alone. The combination treatment also augmented inhibition of EGFR signaling, analyzed by phosphorylation of EGFR and its downstream effectors AKT and ERK1/2, over that with single-agent therapy. Tarceva enhanced GST-MDA-7 and GST-M4 toxicity in cells expressing mutated EGFR proteins that are resistant to the inhibitory effects of Tarceva. In total, these data suggest that combined treatment of NSCLC cells with an EGFR inhibitor can augment the efficacy of GST-MDA-7 and GST-M4 and that the EGFR inhibitor Tarceva may mediate this combinatorial effect by inhibiting multiple tyrosine kinases in addition to the EGFR. This approach highlights a potential new combinatorial strategy, which may prove beneficial for NSCLC patients with acquired resistance to EGFR inhibitors.  相似文献   

6.
Transforming growth factor-alpha (TGF-alpha) is a ligand for the EGF receptor (EGFR). EGFR activation is associated with fibroproliferative processes in human lung disease and animal models of pulmonary fibrosis. We determined the effects of EGFR tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) on the development and progression of TGF-alpha-induced pulmonary fibrosis. Using a doxycycline-regulatable transgenic mouse model of lung-specific TGF-alpha expression, we determined effects of treatment with gefitinib and erlotinib on changes in lung histology, total lung collagen, pulmonary mechanics, pulmonary hypertension, and expression of genes associated with synthesis of ECM and vascular remodeling. Induction in the lung of TGF-alpha caused progressive pulmonary fibrosis over an 8-wk period. Daily administration of gefitinib or erlotinib prevented development of fibrosis, reduced accumulation of total lung collagen, prevented weight loss, and prevented changes in pulmonary mechanics. Treatment of mice with gefitinib 4 wk after the induction of TGF-alpha prevented further increases in and partially reversed total collagen levels and changes in pulmonary mechanics and pulmonary hypertension. Increases in expression of genes associated with synthesis of ECM as well as decreases of genes associated with vascular remodeling were also prevented or partially reversed. Administration of gefitinib or erlotinib did not cause interstitial fibrosis or increases in lavage cell counts. Administration of small molecule EGFR tyrosine kinase inhibitors prevented further increases in and partially reversed pulmonary fibrosis induced directly by EGFR activation without inducing inflammatory cell influx or additional lung injury.  相似文献   

7.

Background

Somatic mutations in the gene for the epidermal growth factor receptor (EGFR) are found in adenocarcinomas of the lung and are associated with sensitivity to the kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva). Lung adenocarcinomas also harbor activating mutations in the downstream GTPase, KRAS, and mutations in EGFR and KRAS appear to be mutually exclusive.

Methods and Findings

We sought to determine whether mutations in KRAS could be used to further enhance prediction of response to gefitinib or erlotinib. We screened 60 lung adenocarcinomas defined as sensitive or refractory to gefitinib or erlotinib for mutations in EGFR and KRAS. We show that mutations in KRAS are associated with a lack of sensitivity to either drug.

Conclusion

Our results suggest that treatment decisions regarding use of these kinase inhibitors might be improved by determining the mutational status of both EGFR and KRAS.  相似文献   

8.
Recent reports suggested that essential directions for new lung cancer, breast carcinoma therapies, as well as the roomier realm of targeted cancer therapies were provided through targeting the epidermal growth factor receptor (EGFR). Patients who carrying non‐small cell lung carcinoma (NSCLC) with activating mutations in EGFR initially respond well to the EGFR inhibitors erlotinib and gefitinib, which were located the active site of the EGFR kinase and designed to act as competitive inhibitors of combining with the ATP. However, patients who were treated with the erlotinib and gefitinib will relapse because of the emergence of drug‐resistant mutations, with T790M mutations accounting for approximately 60% of all resistance. In order to overcome drug resistance, Pharmaceutical chemistry experts recently devoted great endeavors to the development of second‐generation irreversible selective inhibitors which covalently modify Cys797 or Cys773 at the ATP binding cleft. Nevertheless, these inhibitors have not reached ideal effect of experts in patients with T790M positive mutation and apparently because of the dose‐limiting toxicities associated with inhibition of wild type EGFR. A novel class of ‘third generation’ EGFR TKIs have been developed that is sensitising and T790M mutant‐specific whilst sparing WT EGFR, representing a significant breakthrough in the treatment in NSCLC patients with acquired resistance harboring these genotypes. Herein, we provides an overview of the second and third generation inhibitors currently approved, in clinical trial and also encompasses novel structures of discovery. This review mainly focuses on drug resistance, their mechanisms of action, development of structure–activity relationships and binding modes.  相似文献   

9.

Background

The response rate to EGFR tyrosine kinase inhibitors (TKIs) may be poor and unpredictable in cancer patients with EGFR expression itself being an inadequate response indicator. There is limited understanding of the mechanisms underlying this resistance. Furthermore, although TKIs suppress the growth of HER2-overexpressing breast tumor cells, they do not fully inhibit HER2 oncogenic function at physiological doses.

Methodology and Principal Findings

Here we have provided a molecular mechanism of how HER2 oncogenic function escapes TKIs'' inhibition via alternative HER receptor activation as a result of autocrine ligand release. Using both Förster Resonance Energy Transfer (FRET) which monitors in situ HER receptor phosphorylation as well as classical biochemical analysis, we have shown that the specific tyrosine kinase inhibitors (TKIs) of EGFR, AG1478 and Iressa (Gefitinib) decreased EGFR and HER3 phosphorylation through the inhibition of EGFR/HER3 dimerization. Consequent to this, we demonstrate that cleavage of HER4 and dimerization of HER4/HER2 occur together with reactivation of HER3 via HER2/HER3, leading to persistent HER2 phosphorylation in the now resistant, surviving cells. These drug treatment–induced processes were found to be mediated by the release of ligands including heregulin and betacellulin that activate HER3 and HER4 via HER2. Whereas an anti-betacellulin antibody in combination with Iressa increased the anti-proliferative effect in resistant cells, ligands such as heregulin and betacellulin rendered sensitive SKBR3 cells resistant to Iressa.

Conclusions and Significance

These results demonstrate the role of drug-induced autocrine events leading to the activation of alternative HER receptors in maintaining HER2 phosphorylation and in mediating resistance to EGFR tyrosine kinase inhibitors (TKIs) in breast cancer cells, and hence specify treatment opportunities to overcome resistance in patients.  相似文献   

10.
The syntheses and biological evaluations of 4-anilinoquinoline-3-carbonitrile analogues of the three clinical lead 4-anilinoquinazolines Iressa, Tarceva, and CI-1033 are described. The EGFR and HER-2 kinase inhibitory activities and the cell growth inhibition of the two series are compared with each other and with the clinical lead EKB-569. Similar activities are observed between these two series.  相似文献   

11.
谭晓红  杨晓 《生命科学》2011,(4):353-358
针对表皮生长因子受体(EGFR)和血管生成(angiogenesis)信号通路的靶向治疗已经在晚期非小细胞肺癌的治疗上取得成功,但由于抗药性的存在,大多数晚期患者的生存时间仍然提高有限。继发性的EGFR T790M突变和原癌基因肝细胞生长因子受体(MET)的扩增被鉴定为两种主要的抗药机制。最近转化生长因子-β(TGF-β)/白介素-6信号通路被报道能介导选择性和适应性地对erlotinib的抗药。另一方面,Kras突变所致肺癌的靶向治疗方面也取得了一些进展。双重抑制磷脂酰肌醇3-激酶(PI3K)和促分裂素原活化蛋白激酶激酶(MEK)信号通路可导致Kras突变肿瘤的显著消退,联合抑制SRC、PI3K和MEK可使丝氨酸/苏氨酸蛋白激酶11(Lkb1)缺失,Kras突变的肺癌小鼠的肿瘤明显消退,抑制核因子-κB(NF-κB)信号通路导致p53缺失,Kras突变的肿瘤发展显著减慢。这些发现都为发展非小细胞肺癌患者的靶向治疗提供了有力的支持。  相似文献   

12.
Human epidermal growth factor receptor (EGFR) has become a well-established target for the treatment of non-small cell lung cancer (NSCLC). However, a large number of in-frame deletion, insertion and duplication mutations in the EGFR tyrosine kinase (TK) domain have been observed to alter drug response to such a kinase target. Thus, a systematic investigation of the intermolecular interactions between the clinical small-molecule agents and various EGFR in-frame mutants would help to establish a complete picture of drug response to kinase mutations in lung cancer, and to design new EGFR inhibitors with high potency and selectivity to target drug-resistant mutants. Here, we describe a combined pipeline to explore the drug response of five representative EGFR inhibitors, including three FDA-approved agents (gefitinib, erlotinib and lapatinib) and two compounds under clinical development (AEE788 and TAK-285) to a number of clinically relevant EGFR in-frame mutations, aiming at a comprehensive understanding of molecular mechanism and biological implication underlying drug resistance and sensitivity to EGFR in-frame mutations. It was found that the insertion and duplication mutations in exon 20 can generally cause drug resistance to EGFR due to the reduced size of kinase’s active pocket, while deletion mutations in exon 19 associate closely with increased inhibitor sensitivity to EGFR by establishing additional non-bonded interactions across complex interface, including hydrogen bonds, cation–π interactions and hydrophobic contacts.  相似文献   

13.
EGFR mutation-induced drug resistance has become a major threat to the treatment of non-small-cell lung carcinoma. Essentially, the resistance mechanism involves modifications of the intracellular signaling pathways. In our work, we separately investigated the EGFR and ErbB-3 heterodimerization, regarded as the origin of intracellular signaling pathways. On one hand, we combined the molecular interaction in EGFR heterodimerization with that between the EGFR tyrosine kinase and its inhibitor. For 168 clinical subjects, we characterized their corresponding EGFR mutations using molecular interactions, with three potential dimerization partners (ErbB-2, IGF-1R and c-Met) of EGFR and two of its small molecule inhibitors (gefitinib and erlotinib). Based on molecular dynamics simulations and structural analysis, we modeled these mutant-partner or mutant-inhibitor interactions using binding free energy and its components. As a consequence, the mutant-partner interactions are amplified for mutants L858R and L858R_T790M, compared to the wild type EGFR. Mutant delL747_P753insS represents the largest difference between the mutant-IGF-1R interaction and the mutant-inhibitor interaction, which explains the shorter progression-free survival of an inhibitor to this mutant type. Besides, feature sets including different energy components were constructed, and efficient regression trees were applied to map these features to the progression-free survival of an inhibitor. On the other hand, we comparably examined the interactions between ErbB-3 and its partners (EGFR mutants, IGF-1R, ErbB-2 and c-Met). Compared to others, c-Met shows a remarkably-strong binding with ErbB-3, implying its significant role in regulating ErbB-3 signaling. Moreover, EGFR mutants corresponding to poor clinical outcomes, such as L858R_T790M, possess lower binding affinities with ErbB-3 than c-Met does. This may promote the communication between ErbB-3 and c-Met in these cancer cells. The analysis verified the important contribution of IGF-1R or c-Met in the drug resistance mechanism developed in lung cancer treatments, which may bring many benefits to specialized therapy design and innovative drug discovery.  相似文献   

14.
Deregulated activation of protein tyrosine kinases, such as the epidermal growth factor receptor (EGFR) and Abl, is associated with human cancers including non-small cell lung cancer (NSCLC) and chronic myeloid leukemia (CML). Although inhibitors of such activated kinases have proved to be of therapeutic benefit in individuals with NSCLC or CML, some patients manifest intrinsic or acquired resistance to these drugs. We now show that, whereas blockade of either the extracellular signal-regulated kinase (ERK) pathway or the phosphatidylinositol 3-kinase (PI3K)-Akt pathway alone induced only a low level of cell death, it markedly sensitized NSCLC or CML cells to the induction of apoptosis by histone deacetylase (HDAC) inhibitors. Such enhanced cell death induced by the respective drug combinations was apparent even in NSCLC or CML cells exhibiting resistance to EGFR or Abl tyrosine kinase inhibitors, respectively. Co-administration of a cytostatic signaling pathway inhibitor may contribute to the development of safer anticancer strategies by lowering the required dose of cytotoxic HDAC inhibitors for a variety of cancers.  相似文献   

15.
In recent years, the epidermal growth factor receptor (EGFR) has been recognized as a central player and regulator of cancer cell proliferation, apoptosis and angiogenesis and, therefore, as a potentially relevant therapeutic target. Several strategies for EGFR targeting have been developed, the most succesful being represented by monoclonal antibodies, that directly interfere with ligand-receptor binding and small molecule tyrosine kinase inhibitors, that interfere with activation/phosphorylation of EGFR. These agents have been authorized in advanced chemorefractory cancers, including colorectal cancer, non-small-cell lung cancer and head and neck cancer. However, evidence of resistance to these drugs has been described and extensive studies have been performed to investigate whether resistance to EGFR-targeted therapy is primary or secondary. Cellular levels of EGFR do not always correlate with response to the EGFR inhibitors. Indeed, in spite of the over expression and efficient inhibition of EGFR, resistance to EGFR inhibitors may occur. Moreover, given the genetic instability of cancer cells, genetic modifications could enable them to acquire a resistant phenotype to anti-EGFR therapies. Taken together, these findings support the importance of understanding the molecular mechanisms affecting cancer cell sensitivity or resistance to such inhibitors. This review will focus on the most relevant mechanisms contributing to the acquisition of sensitivity/resistance to EGFR inhibitors.  相似文献   

16.
We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein–protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems‐level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14‐protein core network critical to the viability of multiple EGFR‐mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR‐mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.  相似文献   

17.
The epidermal growth factor receptor (EGFR) is an essential driver of oncogenic signalling, and EGFR inhibitors are some of the earliest examples of successful targeted therapies in multiple types of cancer. The tractability of EGFR as a therapeutic target is overshadowed by the inevitable drug resistance that develops. Overcoming resistance mechanisms requires a deeper understanding of EGFR regulation in cancer cells. In this review, we discuss our recent discovery that the palmitoyltransferase DHHC20 palmitoylates EGFR on the C-terminal domain and plays a critical role in signal regulation during oncogenesis. Inhibiting DHHC20 expression or mutating the palmitoylation site on EGFR alters the EGF-induced signalling kinetics from a transient signal to a sustained signal. The change in signalling is accompanied by a decrease in cell proliferation in multiple human cancer cell lines. Our in vivo studies demonstrate that ablating the gene Zdhhc20 by CRISPR/Cas9-mediated inhibition in a mouse model of oncogenic Kras-driven lung adenocarcinoma potently inhibits tumorigenesis. The negative effect on tumorigenesis is mediated by EGFR since the expression of a palmitoylation-resistant mutant form of EGFR also inhibits Kras-driven lung adenocarcinoma. Finally, reducing EGFR palmitoylation increases the sensitivity of multiple cancer cell lines to existing inhibitors of EGFR and downstream signalling effector pathways. We will discuss the implications of these effects and strategies for targeting these new vulnerabilities.  相似文献   

18.
Abstract

Lung cancer is the leading cause of cancer death, and epidermal growth factor receptor (EGFR) kinase domain mutations are a common cause of non-small-cell lung cancer (NSCLC), a major subtype of lung cancers. Patients harboring most of these mutations respond well to the EGFR inhibitors Gefitinib and Erlotinib initially, but soon develop resistance to them due to the emergence of the gatekeeper mutation T790M. The new-generation inhibitors such as AZD9291, HM61713, CO-1686 and WZ4002 can overcome T790M through covalent binding to Cys 797, but ultimately lose their efficacy upon the emergence of the C797S mutation that abolishes the covalent bonding. Allosteric inhibitors EAI001 and EAI045 are a new type of EGFR inhibitors that bind to EGFR away from the ATP-binding site and not relying on Cys 797. In this study, molecular dynamics simulations and free energy calculations were carried out on EAI001 and EAI045 in complex with EGFR, revealing the detailed inhibitory mechanism of EAI001 and EAI045 as EGFR allosteric inhibitor, which was expected to provide a basis for rational drug design of the EGFR allosteric inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   

19.
Kim Y  Li Z  Apetri M  Luo B  Settleman JE  Anderson KS 《Biochemistry》2012,51(25):5212-5222
Epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases (RTK). EGFR overexpression or mutation in many different forms of cancers has highlighted its role as an important therapeutic target. Gefitinib, the first small molecule inhibitor of EGFR kinase function to be approved for the treatment of nonsmall cell lung cancer (NSCLC) by the FDA, demonstrates clinical activity primarily in patients with tumors that harbor somatic kinase domain mutations in EGFR. Here, we compare wild-type EGFR autophosphorylation kinetics to the L834R (also called L858R) EGFR form, one of the most common mutations in lung cancer patients. Using rapid chemical quench, time-resolved electrospray mass spectrometry (ESI-MS), and Western blot analyses, we examined the order of autophosphorylation in wild-type (WT) and L834R EGFR and the effect of gefitinib (Iressa) on the phosphorylation of individual tyrosines. These studies establish that there is a temporal order of autophosphorylation of key tyrosines involved in downstream signaling for WT EGFR and a loss of order for the oncogenic L834R mutant. These studies also reveal unique signature patterns of drug sensitivity for inhibition of tyrosine autophosphorylation by gefitinib: distinct for WT and oncogenic L834R mutant forms of EGFR. Fluorescence studies show that for WT EGFR the binding affinity for gefitinib is weaker for the phosphorylated protein while for the oncogenic mutant, L834R EGFR, the binding affinity of gefitinib is substantially enhanced and likely contributes to the efficacy observed clinically. This mechanistic information is important in understanding the molecular details underpinning clinical observations as well as to aid in the design of more potent and selective EGFR inhibitors.  相似文献   

20.
EGFR and other ErbB-family tyrosine kinases are overexpressed in many human tumors, and their aberrant expression and mutational activation is associated with the development, progression and aggressiveness of a number of malignancies. Thus the EGFR kinase has long been recognized as a potential drug target in oncology, and small-molecule inhibitors have been under development for more than two decades. As a result of their effectiveness in treating non-small cell lung cancers (NSCLCs) driven by somatic mutations in the EGFR kinase, gefitinib and erlotinib were the first EGFR tyrosine kinase inhibitors (TKIs) approved for clinical use. Ironically, these drugs found their target against mutant forms of the EGFR kinase, which have altered enzyme active sites, and not against the wild type (WT) kinase against which their potency and selectivity was carefully honed. Here we review recent structural and enzymological studies that explore the exquisite sensitivity of a subset of these lung cancer mutants to gefitinib and erlotinib. We discuss available structural evidence for the mechanisms of activation of the EGFR kinase by these mutants, and compare it to physiologic activation of the kinase by ligand-induced dimerization. Finally, we consider the mechanisms by which the secondary T790M “gatekeeper” mutation confers resistance to gefitinib and erlotinib.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号