首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.

Background  

Mutations in Nek1 (NIMA-Related Kinase 1) are causal in the murine models of polycystic kidney disease kat and kat 2J . The Neks are known as cell cycle kinases, but recent work in protists has revealed that in addition to roles in the regulation of cell cycle progression, some Neks also regulate cilia. In most cells, cilia are disassembled prior to mitosis and are regenerated after cytokinesis. We propose that Neks participate in the coordination of ciliogenesis with cell cycle progression. Mammalian Nek1 is a candidate for this activity because renal cysts form in response to dysfunctional ciliary signalling.  相似文献   

2.
The ataxia telangiectasia-mutated (ATM) and Rad3-related kinase (ATR) is a central component of the cell cycle checkpoint machinery required to induce cell cycle arrest in response to DNA damage. Accumulating evidence suggests a role for ATR in signaling DNA damage during S-phase. Here we show that ATR is recruited to nuclear foci induced by replication fork stalling in a manner that is dependent on the single stranded binding protein replication protein A (RPA). ATR associates with chromatin in asynchronous cell cultures, and we use a variety of approaches to examine the association of ATR with chromatin in the absence of agents that cause genotoxic stress. Under our experimental conditions, ATR exhibits a decreased affinity for chromatin in quiescent cells and cells synchronized at mitosis but an increased affinity for chromatin as cells re-enter the cell cycle. Using centrifugal elutriation to obtain cells enriched at various stages of the cell cycle, we show that ATR associates with chromatin in a cell cycle-dependent manner, specifically during S-phase. Cell cycle association of ATR with chromatin mirrors that of RPA in addition to claspin, a cell cycle checkpoint protein previously shown to be a component of the replication machinery. Furthermore, association of ATR with chromatin occurs in the absence of detectable DNA damage and cell cycle checkpoint activation. These data are consistent with a model whereby ATR is recruited to chromatin during the unperturbed cell cycle and points to a role of ATR in monitoring genome integrity during normal S-phase progression.  相似文献   

3.
4.
5.
DNA replication and genotoxic stresses activate various checkpoint-associated protein kinases, and checkpoint dysfunction often leads to cell lethality. Here, we have identified new members of the mammalian NIMA family of kinases, termed Nek11L and Nek11S (NIMA-related kinase 11 Long and Short isoform) as novel DNA replication/damage stresses-responsive kinases. Molecular cloning and biochemical studies showed that the catalytic domain of Nek11 is most similar to Nek4 and Nek3, and substrate specificity of Nek11L is distinguishable from those of NIMA and Nek2. The expression of nek11L mRNA increased through S to G(2)/M phase, and subcellular localization of Nek11 protein altered between interphase and prometaphase, suggesting multiple roles of Nek11. We found an activation of Nek11 kinase activity when cells were treated with various DNA-damaging agents and replication inhibitors, and this activation of Nek11 was suppressed by caffeine in HeLaS3 cells. The transient expression of wild-type Nek11L enhanced the aphidicolin-induced S-phase arrest, whereas the aphidicolin-induced S-phase arrest was reduced in the U2OS cell lines expressing kinase-negative Nek11L (K61R), and these cells were more sensitive to aphidicolin-induced cell lethality. Collectively, these results suggest that Nek11 has a role in the S-phase checkpoint downstream of the caffeine-sensitive pathway.  相似文献   

6.
Polycystic kidney disease and related syndromes involve dysregulation of cell proliferation in conjunction with ciliary defects. The relationship between cilia and cell cycle is enigmatic, but it may involve regulation by the NIMA-family of kinases (Neks). We previously showed that the Nek Fa2p is important for ciliary function and cell cycle in Chlamydomonas. We now show that Fa2p localizes to an important regulatory site at the proximal end of cilia in both Chlamydomonas and a mouse kidney cell line. Fa2p also is associated with the proximal end of centrioles. Its localization is dynamic during the cell cycle, following a similar pattern in both cell types. The cell cycle function of Fa2p is kinase independent, whereas its ciliary function is kinase dependent. Mice with mutations in Nek1 or Nek8 have cystic kidneys; therefore, our discovery that a member of this phylogenetic group of Nek proteins is localized to the same sites in Chlamydomonas and kidney epithelial cells suggests that Neks play conserved roles in the coordination of cilia and cell cycle progression.  相似文献   

7.
The NIMA-related serine/threonine kinases (Neks) function in the cell cycle and regulate ciliary and flagellar length. The Giardia lamblia genome encodes 198 Neks, of which 56 are predicted to be active. Here we believe that we report the first functional analysis of two G. lamblia Neks. The GlNek1 and GlNek2 kinase domains share 57% and 43% identity to the kinase domains of human Nek1 and Nek2, respectively. Both GlNeks are active in vitro, have dynamic relocalisation during the cell cycle, and are expressed throughout the life cycle, with GlNek1 being upregulated in cysts. Over-expression of inactive GlNek1 delays disassembly of the parental attachment disc and cytokinesis, whilst over-expression of either wild type GlNek1 or inactive mutant GlNek2 inhibits excystation.  相似文献   

8.
The adenomatous polyposis coli (APC) tumor suppressor traffics between nucleus and cytoplasm to perform distinct functions. Here we identify a specific role for APC in the DNA replication stress response. The silencing of APC caused an accumulation of asynchronous cells in early S phase and delayed S phase progression in cells released from hydroxyurea-mediated replication arrest. Immunoprecipitation assays revealed a selective binding of APC to replication protein A 32kDa subunit (RPA32), and the APC-RPA32 complex increased at chromatin after hydroxyurea treatment. Interestingly, APC knock-down prevented accumulation at chromatin of the stress-induced S33- and S29-phosphorylated forms of RPA32, and reduced the expression of ATR-phosphorylated forms of S317-phospho-Chk1 and γ-H2AX. Using RPA32-inducible cells we showed that reconstitution of RPA32 diminished the S-phase delay caused by loss of APC. In contrast to full-length APC, the truncated APC mutant protein expressed in SW480 colon cancer cells was impaired in its binding and regulation of RPA32, and failed to regulate cell cycle after replication stress. We propose that APC associates with RPA at stalled DNA replication forks and promotes the ATR-dependent phosphorylation of RPA32, Chk1 and γ-H2AX in response to DNA replication stress, thereby influencing the rate of re-entry into the cell cycle.  相似文献   

9.
The disruption of DNA replication in cells triggers checkpoint responses that slow-down S-phase progression and protect replication fork integrity. These checkpoints are also determinants of cell fate and can help maintain cell viability or trigger cell death pathways. CHK1 has a pivotal role in such S-phase responses. It helps maintain fork integrity during replication stress and protects cells from several catastrophic fates including premature mitosis, premature chromosome condensation and apoptosis. Here we investigated the role of CHK1 in protecting cancer cells from premature mitosis and apoptosis. We show that premature mitosis (characterized by the induction of histone H3 phosphorylation, aberrant chromatin condensation, and persistent RPA foci in arrested S-phase cells) is induced in p53-deficient tumour cells depleted of CHK1 when DNA synthesis is disrupted. These events are accompanied by an activation of Aurora kinase B in S-phase cells that is essential for histone H3 Ser10 phosphorylation. Histone H3 phosphorylation precedes the induction of apoptosis in p53−/− tumour cell lines but does not appear to be required for this fate as an Aurora kinase inhibitor suppresses phosphorylation of both Aurora B and histone H3 but has little effect on cell death. In contrast, only a small fraction of p53+/+ tumour cells shows this premature mitotic response, although they undergo a more rapid and robust apoptotic response. Taken together, our results suggest a novel role for CHK1 in the control of Aurora B activation during DNA replication stress and support the idea that premature mitosis is a distinct cell fate triggered by the disruption of DNA replication when CHK1 function is suppressed.  相似文献   

10.
11.
We have cloned and characterized murine Nek3 (NIMA-related kinase 3), a novel mammalian gene product structurally related to the cell cycle-regulatory kinase NIMA of Aspergillus nidulans. By RNase protection, low levels of Nek3 expression could be detected in all organs examined, regardless of proliferative index. In contrast to Nek1 and Nek2, Nek3 levels were not particularly elevated in either the male or the female germ line. Nek3 levels showed at most marginal variations through the cell cycle, but they were elevated in G0-arrested, quiescent fibroblasts. Furthermore, no cell cycle-dependent changes in Nek3 activity could be detected, and no effects upon cell cycle progression could be observed upon antibody microinjection or overexpression of either wild-type or catalytically inactive Nek3. Finally, Nek3 was found to be a predominantly cytoplasmic enzyme. These data indicate that Nek3 differs from previously characterized Neks with regard to all parameters investigated, including organ specificity of expression, cell cycle dependence of expression and activity, and subcellular localization. Hence, the structural similarity between mammalian Neks may not necessarily be indicative of a common function, and it is possible that some members of this kinase family may perform functions that are not directly related to cell cycle control.  相似文献   

12.
13.
Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A(NIMA)-related kinases(Neks). The founding member of this family is the sole member NIMA of Aspergillus nidulans, which is crucial for the initiation of mitosis in that organism. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals:(1) centrioles/mitosis;(2) primary ciliary function/ciliopathies; and(3) DNA damage response(DDR). Recent findings, especially on Nek 1 and 8, showed however, that several Neks participate in parallel in at least two of these contexts: primary ciliary function and DDR. In the core section of this in-depth review, we report the current detailed functional knowledge on each of the 11 Neks. In the discussion, we return to the cross-connections among Neks and point out how our and other groups' functional and interactomics studies revealed that most Neks interact with protein partners associated with two if not all three of the functional contexts. We then raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize the cellular events associated with these three core functions. The new and exciting findings on the Nek family open new perspectives and should allow the Neks to finally claim the attention they deserve in the field of kinases and cell cycle biology.  相似文献   

14.
In cancer cells ablation of the GINS complex member Psf2 elicits chromosome mis-segregation yet the precise role of Psf2 in mitosis is unknown. We investigated the putative mitotic role of the GINS complex using synchronized cultures of untransformed Human Dermal Fibroblasts (HDF). Metaphase spreads from Psf1/Psf2-depleted HDF were normal and mitotic exit of Psf1/Psf2-depleted cells was only slightly delayed, suggesting no direct role for the GINS complex in mitosis of untransformed cells. Because the GINS complex is required for initiation and elongation events during DNA replication we hypothesized that the mitotic delay of Psf1/Psf2-deficient cells resulted indirectly from defective DNA synthesis during a prior S-phase. Therefore, we investigated the effects of Psf1/Psf2-depletion on DNA replication. Recruitment of Mcm7 to chromatin during G1 was unaffected by Psf1/Psf2-ablation, indicating that replication licensing does not require GINS. However, chromatin-binding of Cdc45 and PCNA, onset of DNA synthesis and accumulation of G2/M markers were delayed in Psf1/Psf2-ablated cells. The cell cycle delay of Psf1/Psf2-depleted HDF was associated with several hallmarks of pre-malignancy including γH2AX, Thr 68-phosphorylated Chk2, and increased numbers of aberrant fragmented nuclei. Ectopic expression of catalytically-inactive Chk2 promoted S-phase and G2/M progression in Psf1/Psf2-depleted cells, as evidenced by modestly-increased rates of DNA synthesis and increased dephosphorylation of Cdc2. Therefore, S-phase progression of untransformed cells containing sub-optimal levels of Psf1/2 is associated with replication stress and acquisition of DNA damage. The ensuing Chk2-mediated DNA damage signalling likely contributes to maintenance of chromosomal integrity.  相似文献   

15.
Drosophila SUUR (Suppressor of UnderReplication) protein was shown to regulate the DNA replication elongation process in endocycling cells. This protein is also known to be the component of silent chromatin in polyploid and diploid cells. To mark the different cell cycle stages, we used immunostaining patterns of PCNA, the main structural component of replication fork. We demonstrate that SUUR chromatin binding is dynamic throughout the endocyle in Drosophila salivary glands. We observed that SUUR chromosomal localization changed along with PCNA pattern and these proteins largely co-localized during the late S-phase in salivary glands. The hypothesized interaction between SUUR and PCNA was confirmed by co-immunoprecipitation from embryonic nuclear extracts. Our findings support the idea that the effect of SUUR on replication elongation depends on the cell cycle stage and can be mediated through its physical interaction with replication fork.  相似文献   

16.
Five distinct patterns of DNA replication have been identified during S-phase in asynchronous and synchronous cultures of mammalian cells by conventional fluorescence microscopy, confocal laser scanning microscopy, and immunoelectron microscopy. During early S-phase, replicating DNA (as identified by 5-bromodeoxyuridine incorporation) appears to be distributed at sites throughout the nucleoplasm, excluding the nucleolus. In CHO cells, this pattern of replication peaks at 30 min into S-phase and is consistent with the localization of euchromatin. As S-phase continues, replication of euchromatin decreases and the peripheral regions of heterochromatin begin to replicate. This pattern of replication peaks at 2 h into S-phase. At 5 h, perinucleolar chromatin as well as peripheral areas of heterochromatin peak in replication. 7 h into S-phase interconnecting patches of electron-dense chromatin replicate. At the end of S-phase (9 h), replication occurs at a few large regions of electron-dense chromatin. Similar or identical patterns have been identified in a variety of mammalian cell types. The replication of specific chromosomal regions within the context of the BrdU-labeling patterns has been examined on an hourly basis in synchronized HeLa cells. Double labeling of DNA replication sites and chromosome-specific alpha-satellite DNA sequences indicates that the alpha-satellite DNA replicates during mid S-phase (characterized by the third pattern of replication) in a variety of human cell types. Our data demonstrates that specific DNA sequences replicate at spatially and temporally defined points during the cell cycle and supports a spatially dynamic model of DNA replication.  相似文献   

17.
RB-dependent S-phase response to DNA damage   总被引:7,自引:0,他引:7       下载免费PDF全文
The retinoblastoma tumor suppressor protein (RB) is a potent inhibitor of cell proliferation. RB is expressed throughout the cell cycle, but its antiproliferative activity is neutralized by phosphorylation during the G(1)/S transition. RB plays an essential role in the G(1) arrest induced by a variety of growth inhibitory signals. In this report, RB is shown to also be required for an intra-S-phase response to DNA damage. Treatment with cisplatin, etoposide, or mitomycin C inhibited S-phase progression in Rb(+/+) but not in Rb(-/-) mouse embryo fibroblasts. Dephosphorylation of RB in S-phase cells temporally preceded the inhibition of DNA synthesis. This S-phase dephosphorylation of RB and subsequent inhibition of DNA replication was observed in p21(Cip1)-deficient cells. The induction of the RB-dependent intra-S-phase arrest persisted for days and correlated with a protection against DNA damage-induced cell death. These results demonstrate that RB plays a protective role in response to genotoxic stress by inhibiting cell cycle progression in G(1) and in S phase.  相似文献   

18.
19.
Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1(-) fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G(2)/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.  相似文献   

20.
Ku70-Ku80 complex is the regulatory subunit of DNA-dependent protein kinase (DNA-PK) and plays an essential role in double-strand break repair following ionizing radiation (IR). It preferentially interacts with chromosomal breaks and protects DNA ends from nuclease attack. Here we show evidence that cells defective in Ku80 exhibit a significantly slow S phase progression following DNA damage. IR-induced retardation in S phase progression in Ku80-/- cells was not due to the lack of DNA-PK kinase activity because both wild-type cells and DNA-PKcs-deficient cells showed no such symptom. Instead, proliferating cell nuclear antigen (PCNA) dissociated from chromosomes following IR in Ku80-deficient cells but not in wild-type or DNA-PKcs-deficient cells. Treatment of HeLa cells with IR induced colocalization of the Ku complex with PCNA on chromosomes. Together, these results suggest that binding of the Ku complex at chromosomal breaks may be necessary to maintain the sliding clamps (PCNA) on chromatin, which would allow cells to resume DNA replication without a major delay following IR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号