共查询到20条相似文献,搜索用时 0 毫秒
1.
《American journal of human genetics》2014,94(5):677-694
Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10−5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10−15, ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation. 相似文献
2.
3.
《Cell cycle (Georgetown, Tex.)》2013,12(5):614-618
Research on tumor suppressors has for a long time run on two tracks: analysis of the mutations found in human tumor material, and active genetic manipulation in mice. As primary human cells were not easily amenable to genetic alterations, the proof to designate a suspected gene as a tumor suppressor was often by generation of knockout mice and analysis of their phenotypes. In this way, a vast amount of information has been gathered on the actions of major players in carcinogenesis. However, it has recently become apparent that there are major differences in the requirements for oncogenic transformation between human and mouse cells. Among these are the expression of hTERT, SV40 small t, and the response to Ras induced growth arrest by the tumor suppressor pathways involving p53, pRb and the INK4A locus. The potential contribution of these tumor suppressors to the prevention of transformation of human cells can now begin to be unraveled by the recent emergence of novel RNA interference genetic tools. 相似文献
4.
Lianhe Zheng Dianzhong Zhang Yunfei Zhang Yanhua Wen Yucai Wang 《Molecules and cells》2014,37(2):118-125
Osteosarcoma is the most common primary malignant bone tumor with a very poor prognosis. Treating osteosarcoma remains a challenge due to its high transitivity. Tenascin-C, with large molecular weight variants including different combinations of its alternative spliced FNIII repeats, is specifically over expressed in tumor tissues. This study examined the expression of Tenascin-C FNIIIA1 in osteosarcoma tissues, and estimated the effect of mechanical stimulation on A1 expression in MG-63 cells. Through immunohistochemical analysis, we found that the A1 protein was expressed at a higher level in osteosarcoma tissues than in adjacent normal tissues. By cell migration assay, we observed that there was a significant correlation between A1 expression and MG-63 cell migra-tion. The relation is that Tenascin-C FNIIIA1 can promote MG-63 cell migration. According to our further study into the effect of mechanical stimulation on A1 expression in MG-63 cells, the mRNA and protein levels of A1 were significantly up-regulated under mechanical stress with the mTOR molecule proving indispensable. Meanwhile, 4E-BP1 and S6K1 (downstream molecule of mTOR) are necessary for A1 normal expression in MG-63 cells whether or not mechanical stress has been encountered. We found that Tenascin-C FNIIIA1 is over-expressed in osteosar-coma tissues and can promote MG-63 cell migration. Furthermore, mechanical stress can facilitate MG-63 cell migration though facilitating A1 overexpression with the necessary molecules (mTOR, 4E-BP1 and S6K1). In con-clusion, high expression of A1 may promote the meta-stasis of osteosarcoma by facilitating MG-63 cell migration. Tenascin-C FNIIIA1 could be used as an indicator in metastatic osteosarcoma patients. 相似文献
5.
Recent genome-wide association studies (GWAS) have successfully identified several gene loci associated with multiple sclerosis (MS) susceptibility, severity or interferon-beta (IFN-ß) response. However, due to the nature of these studies, the functional relevance of these loci is not yet fully understood. We have utilized a systems biology based approach to explore the genetic interactomes of these MS related traits. We hypothesised that genes and pathways associated with the 3 MS related phenotypes might interact collectively to influence the heterogeneity and unpredictable clinical outcomes observed. Individual genetic interactomes for each trait were constructed and compared, followed by prioritization of common interactors based on their frequencies. Pathway enrichment analyses were performed to highlight shared functional pathways. Biologically relevant genes ABL1, GRB2, INPP5D, KIF1B, PIK3R1, PLCG1, PRKCD, SRC, TUBA1A and TUBA4A were identified as common to all 3 MS phenotypes. We observed that the highest number of first degree interactors were shared between MS susceptibility and MS severity (p = 1.34×10−79) with UBC as the most prominent first degree interactor for this phenotype pair from the prioritisation analysis. As expected, pairwise comparisons showed that MS susceptibility and severity interactomes shared the highest number of pathways. Pathways from signalling molecules and interaction, and signal transduction categories were found to be highest shared pathways between 3 phenotypes. Finally, FYN was the most common first degree interactor in the MS drugs-gene network. By applying the systems biology based approach, additional significant information can be extracted from GWAS. Results of our interactome analyses are complementary to what is already known in the literature and also highlight some novel interactions which await further experimental validation. Overall, this study illustrates the potential of using a systems biology based approach in an attempt to unravel the biological significance of gene loci identified in large GWAS. 相似文献
6.
7.
Delord B Baraduc P Costalat R Burnod Y Guigon E 《Journal of computational neuroscience》2000,8(3):251-273
We analyzed the cellular short-term memory effects induced by a slowly inactivating potassium (Ks) conductance using a biophysical model of a neuron. We first described latency-to-first-spike and temporal changes in firing frequency as a function of parameters of the model, injected current and prior history of the neuron (deinactivation level) under current clamp. This provided a complete set of properties describing the Ks conductance in a neuron. We then showed that the action of the Ks conductance is not generally appropriate for controlling latency-to-first-spike under random synaptic stimulation. However, reliable latencies were found when neuronal population computation was used. Ks inactivation was found to control the rate of convergence to steady-state discharge behavior and to allow frequency to increase at variable rates in sets of synaptically connected neurons. These results suggest that inactivation of the Ks conductance can have a reliable influence on the behavior of neuronal populations under real physiological conditions. 相似文献
8.
Cellular Signaling Pathways and Posttranslational Modifications Mediated by Nematode Effector Proteins 总被引:1,自引:0,他引:1
Tarek Hewezi 《Plant physiology》2015,169(2):1018-1026
Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization.The root-knot (Meloidogyne spp.) and cyst (Globodera and Heterodera spp.) nematodes are sedentary endoparasites of the root system in a wide range of plant species. These obligate parasites engage in intricate relationships with their host plants that result in the transformation of normal root cells into specialized feeding sites, which provide the nematodes with all the nutrients required for their development. The initiation and maintenance of functional feeding cells by root-knot nematodes (giant cells) and cyst nematodes (syncytia) seems to be a dynamic process involving active dialogue between the nematodes and their host plants. The nematodes use their stylet, a needle-like apparatus, to deliver effector proteins into the host cells (Williamson and Hussey, 1996; Davis et al., 2004). These effector proteins are mainly synthesized in the nematode esophageal glands, which consist of one dorsal cell and two subventral cells. The activity of these glands is developmentally regulated, with secretions from the two subventral glands being most dynamic during the early stage of infection, consisting of root penetration, migration, and feeding site initiation. Secretions from the single dorsal cell seem to be more active during the sedentary stage of nematode feeding (Hussey and Mims, 1990).Recent progress in the functional characterization of effector proteins from a number of phytonematodes has elucidated diverse mechanisms through which these effectors facilitate the nematode parasitism of host plants. One such mechanism involves depolymerization of the main structural polysaccharide constituents of the plant cell wall by using a diverse collection of extracellular effector proteins (Davis et al., 2011; Wieczorek, 2015). Another mechanism includes the molecular mimicry of host proteins in both form and function (Gheysen and Mitchum, 2011). This strategy could be highly successful when the nematode-secreted effectors imitate host functions to subvert cellular processes in favor of nematodes while escaping the regulation of host cellular processes. Another mechanism of effector action is the modulation of central components of auxin signaling to apparently generate unique patterns of auxin-responsive gene expression, leading to numerous physiological and developmental changes required for feeding site formation and development (Cabrera et al., 2015). In addition, cyst and root-knot nematodes have evolved to efficiently suppress defense responses during their prolonged period of sedentary biotrophic interaction with their hosts. Accordingly, a large number of nematode effectors are engaged in suppressing host immune responses and defense signaling (Hewezi and Baum, 2013; Goverse and Smant, 2014). Finally, there is accumulating evidence that nematode effector proteins target and exploit the host posttranslational machinery to the parasite’s advantage. Posttranslational modifications (PTMs) are tightly controlled and highly specific processes that enable rapid cellular responses to specific stimuli without the requirement of new protein synthesis (Kwon et al., 2006). Phosphorylation, ubiquitination, and histone modifications, among others, have recently been identified as fundamental cellular processes controlling immune signaling pathways (Stulemeijer and Joosten, 2008; Howden and Huitema, 2012; Marino et al., 2012; Salomon and Orth, 2013). This finding underscores the importance of targeting and coopting host posttranslational machinery by pathogen effectors to exert their virulence functions. Here, we review recent progress in the functional characterization of nematode effector proteins and the parasitic strategies that involve modifications of the plant cell wall, molecular mimicry of host factors, alteration of auxin signaling, subversion of defense signaling, and targeting and utilizing the host posttranslational machinery. 相似文献
9.
10.
Characterization of Regulatory Pathways in Xylella fastidiosa: Genes and Phenotypes Controlled by algU
下载免费PDF全文

Xiang Yang Shi C. Korsi Dumenyo Rufina Hernandez-Martinez Hamid Azad Donald A. Cooksey 《Applied microbiology》2007,73(21):6748-6756
Many virulence genes in plant bacterial pathogens are coordinately regulated by “global” regulatory genes. Conducting DNA microarray analysis of bacterial mutants of such genes, compared with the wild type, can help to refine the list of genes that may contribute to virulence in bacterial pathogens. The regulatory gene algU, with roles in stress response and regulation of the biosynthesis of the exopolysaccharide alginate in Pseudomonas aeruginosa and many other bacteria, has been extensively studied. The role of algU in Xylella fastidiosa, the cause of Pierce's disease of grapevines, was analyzed by mutation and whole-genome microarray analysis to define its involvement in aggregation, biofilm formation, and virulence. In this study, an algU::nptII mutant had reduced cell-cell aggregation, attachment, and biofilm formation and lower virulence in grapevines. Microarray analysis showed that 42 genes had significantly lower expression in the algU::nptII mutant than in the wild type. Among these are several genes that could contribute to cell aggregation and biofilm formation, as well as other physiological processes such as virulence, competition, and survival. 相似文献
11.
In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. 相似文献
12.
Fabio Raman Elizabeth Scribner Olivier Saut Cornelia Wenger Thierry Colin Hassan M. Fathallah-Shaykh 《PloS one》2016,11(1)
Glioblastoma multiforme is a malignant brain tumor with poor prognosis and high morbidity due to its invasiveness. Hypoxia-driven motility and concentration-driven motility are two mechanisms of glioblastoma multiforme invasion in the brain. The use of anti-angiogenic drugs has uncovered new progression patterns of glioblastoma multiforme associated with significant differences in overall survival. Here, we apply a mathematical model of glioblastoma multiforme growth and invasion in humans and design computational trials using agents that target angiogenesis, tumor replication rates, or motility. The findings link highly-dispersive, moderately-dispersive, and hypoxia-driven tumors to the patterns observed in glioblastoma multiforme treated by anti-angiogenesis, consisting of progression by Expanding FLAIR, Expanding FLAIR + Necrosis, and Expanding Necrosis, respectively. Furthermore, replication rate-reducing strategies (e.g. Tumor Treating Fields) appear to be effective in highly-dispersive and moderately-dispersive tumors but not in hypoxia-driven tumors. The latter may respond to motility-reducing agents. In a population computational trial, with all three phenotypes, a correlation was observed between the efficacy of the rate-reducing agent and the prolongation of overall survival times. This research highlights the potential applications of computational trials and supports new hypotheses on glioblastoma multiforme phenotypes and treatment options. 相似文献
13.
14.
15.
16.
17.
C. Maurel A. Dangoumau S. Marouillat C. Brulard A. Chami R. Hergesheimer P. Corcia H. Blasco C. R. Andres P. Vourc’h 《Molecular neurobiology》2018,55(8):6480-6499
Amyotrophic lateral sclerosis (ALS) is a disease caused by the degeneration of motor neurons (MNs) leading to progressive muscle weakness and atrophy. Several molecular pathways have been implicated, such as glutamate-mediated excitotoxicity, defects in cytoskeletal dynamics and axonal transport, disruption of RNA metabolism, and impairments in proteostasis. ALS is associated with protein accumulation in the cytoplasm of cells undergoing neurodegeneration, which is a hallmark of the disease. In this review, we focus on mechanisms of proteostasis, particularly protein degradation, and discuss how they are related to the genetics of ALS. Indeed, the genetic bases of the disease with the implication of more than 30 genes associated with familial ALS to date, together with the important increase in understanding of endoplasmic reticulum (ER) stress, proteasomal degradation, and autophagy, allow researchers to better understand the mechanisms underlying the selective death of motor neurons in ALS. It is clear that defects in proteostasis are involved in this type of cellular degeneration, but whether or not these mechanisms are primary causes or merely consequential remains to be clearly demonstrated. Novel cellular and animal models allowing chronic expression of mutant proteins, for example, are required. Further studies linking genetic discoveries in ALS to mechanisms of protein clearance will certainly be crucial in order to accelerate translational and clinical research towards new therapeutic targets and strategies. 相似文献
18.
M. A. Petrosyan N. O. Melezhnikova A. P. Domnina V. A. Andryushina T. S. Goryachaya L. I. Petrova O. V. Malysheva A. V. Razygraev V. O. Polyakova N. S. Sapronov 《Cell and Tissue Biology》2018,12(1):57-65
The possibility of using the endometrial cell line as a model for studying the pharmacological activity of progesterone analogues is considered. Conditions for obtaining and culturing of endometrial cell lines are described, the morphological characteristic is given, and the immunophenotypic profile, karyotype, and expression of progesterone and estrogen receptors are presented. Not all studied endometrial lines showed the ability to decidualize cells under the action of hormonal inducers (combinations of estradiol with progesterone and its analogues). It appeared that lines sensitive to hormones are able to increase the secretion of specific markers of decidualization under the action of highly active gestagenes (progesterone analogues) to a greater extent than under action of progesterone. These data are a basis for further development of the cellular model for studying the pharmacological activity of gestagenic compounds. 相似文献
19.
A New In Vitro Model to Study Cellular Responses after Thermomechanical Damage in Monolayer Cultures
Although electrosurgical instruments are widely used in surgery to cut tissue layers or to achieve hemostasis by coagulation (electrocautery), only little information is available concerning the inflammatory or immune response towards the debris generated. Given the elevated local temperatures required for successful electrocautery, the remaining debris is likely to contain a plethora of compounds entirely novel to the intracorporal setting. A very common in vitro method to study cell migration after mechanical damage is the scratch assay, however, there is no established model for thermomechanical damage to characterise cellular reactions. In this study, we established a new in vitro model to investigate exposure to high temperature in a carefully controlled cell culture system. Heatable thermostat-controlled aluminium stamps were developed to induce local damage in primary human umbilical vein endothelial cells (HUVEC). The thermomechanical damage invoked is reproducibly locally confined, therefore allowing studies, under the same experimental conditions, of cells affected to various degrees as well as of unaffected cells. We show that the unaffected cells surrounding the thermomechanical damage zone are able to migrate into the damaged area, resulting in a complete closure of the ‘wound’ within 48 h. Initial studies have shown that there are significant morphological and biological differences in endothelial cells after thermomechanical damage compared to the mechanical damage inflicted by using the unheated stamp as a control. Accordingly, after thermomechanical damage, cell death as well as cell protection programs were activated. Mononuclear cells adhered in the area adjacent to thermomechanical damage, but not to the zone of mechanical damage. Therefore, our model can help to understand the differences in wound healing during the early phase of regeneration after thermomechanical vs. mechanical damage. Furthermore, this model lends itself to study the response of other cells, thus broadening the range of thermal injuries that can be analysed. 相似文献
20.
Christopher M. Bryant Daniel L. Albertus Sinae Kim Guoan Chen Christian Brambilla Mickael Guedj Chinatsu Arima William D. Travis Yasushi Yatabe Takashi Takahashi Elisabeth Brambilla David G. Beer 《PloS one》2010,5(7)
Lung adenocarcinoma (AD) represents a predominant type of lung cancer demonstrating significant morphologic and molecular heterogeneity. We sought to understand this heterogeneity by utilizing gene expression analyses of 432 AD samples and examining associations between 27 known cancer-related pathways and the AD subtype, clinical characteristics and patient survival. Unsupervised clustering of AD and gene expression enrichment analysis reveals that cell proliferation is the most important pathway separating tumors into subgroups. Further, AD with increased cell proliferation demonstrate significantly poorer outcome and an increased solid AD subtype component. Additionally, we find that tumors with any solid component have decreased survival as compared to tumors without a solid component. These results lead to the potential to use a relatively simple pathological examination of a tumor in order to determine its aggressiveness and the patient''s prognosis. Additional results suggest the ability to use a similar approach to determine a patient''s sensitivity to targeted treatment. We then demonstrated the consistency of these findings using two independent AD cohorts from Asia (N = 87) and Europe (N = 89) using the identical analytic procedures. 相似文献