首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Heterochromatin performs a central role in chromosome segregation and stability by promoting cohesion at centromeres. Establishment of both heterochromatin-mediated silencing and cohesion requires passage through S phase, although the mechanism is unknown. Here we demonstrate that Schizosaccharomyces pombe Hsk1 (CDC7), a conserved Dbf4-dependent protein kinase (DDK) that regulates replication initiation, interacts with and phosphorylates the heterochromatin protein 1 (HP1) equivalent Swi6 (ref. 6). Hsk1 and its regulatory subunit Dfp1 function downstream of Swi6 localization to promote heterochromatin function and cohesion specifically at centromeres. This role for Hsk1-Dfp1 is separable from its replication initiation activity, providing a temporal link between S phase and centromere cohesion that is mediated by heterochromatin.  相似文献   

4.
5.
6.
Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during prophase and prevents premature sister-chromatid separation. Heterochromatin protein 1 (HP1) has been proposed to protect centromeric sister-chromatid cohesion by directly targeting Sgo1 to centromeres in mitosis. Here we show that HP1α is targeted to mitotic centromeres by INCENP, a subunit of the chromosome passenger complex (CPC). Biochemical and structural studies show that both HP1-INCENP and HP1-Sgo1 interactions require the binding of the HP1 chromo shadow domain to PXVXL/I motifs in INCENP or Sgo1, suggesting that the INCENP-bound, centromeric HP1α is incapable of recruiting Sgo1. Consistently, a Sgo1 mutant deficient in HP1 binding is functional in centromeric cohesion protection and localizes normally to centromeres in mitosis. By contrast, INCENP or Sgo1 mutants deficient in HP1 binding fail to localize to centromeres in interphase. Therefore, our results suggest that HP1 binding by INCENP or Sgo1 is dispensable for centromeric cohesion protection during mitosis of human cells, but might regulate yet uncharacterized interphase functions of CPC or Sgo1 at the centromeres.  相似文献   

7.
8.
Sister-chromatid cohesion, the machinery used in eukaryote organisms to prevent aneuploidy, tethers sister chromatids together after their replication in S phase until mitosis. Previous studies in fission yeast, Drosophila and mammals have demonstrated the requirement for the heterochromatin formation pathway for proper centromeric cohesion. However, the exact role of heterochromatin protein 1 (HP1) in sister-chromatid cohesion in mammals is still unknown. In this study, we disrupted endogenous HP1 expression in HeLa cells using a dominant-negative mutant of HP1beta and wild-type or mutant forms of HP1alpha. We then examined their effects on chromosome alignment, segregation and cohesion. Enforced expression of these constructs leads to frequent chromosome misalignment and missegregation. Mitotic chromosomes from these cells also exhibit a loosened primary constriction and separated sister chromatids. We further demonstrate that alignment of the cohesin proteins around kinetochores was also aberrant and that cohesin complexes bound less tightly in these cells. Unexpectedly, we observed a "wavy" chromosome morphology resembling that seen upon depletion of condensin proteins in cells with over-expression of HP1alpha, but not in cells expressing the HP1beta mutant. These results indicate that proper HP1 status is required for sister-chromatid cohesion in mammalian cells, and suggest that HP1alpha might be required for chromosome condensation.  相似文献   

9.
10.
Heterochromatin in S. pombe is associated with gene silencing at telomeres, the mating locus and centromeres. The compact heterochromatin structure raises the question how it unpacks and reforms during DNA replication. We show that the essential DNA replication factor Cdc18 (CDC6) associates with heterochromatin protein 1 (Swi6) in vivo and in vitro. Biochemical mapping and mutational analysis of the association domains show that the N-terminus of Cdc18 interacts with the chromoshadow domain of Swi6. Mutations in Swi6 that disrupt this interaction disrupt silencing and delay replication in the centromere. A mutation cdc18-I43A that reduces Cdc18 association with Swi6 has no silencing defect at the centromere, but changes Swi6 distribution and accelerates the timing of centromere replication. We suggest that fine tuning of Swi6 association at replication origins is important for negative as well as positive control of replication initiation.  相似文献   

11.
芽殖酵母(Saccharomyces cerevisiae)和裂殖酵母(Schizosaccharomyces pombe)是用来研究异染色质形成、细胞周期、DNA复制等重要细胞功能的理想单细胞真核生物.本文主要介绍这2种酵母中异染色质形成的机制.异染色质是一种抑制基因转录和DNA重组的特殊染色质结构.尽管在芽殖酵母和裂殖酵母中异染色质形成都需要组蛋白修饰,但异染色质建立的机制不同.在芽殖酵母中参与异染色质形成的主要蛋白是Sir1-4蛋白(其中Sir2为组蛋白H3去乙酰化酶),而组蛋白H3赖氨酸9甲基化酶Clr4和异染色质蛋白Swi6在裂殖酵母异染色质形成中起关键的作用.在这两个酵母中,参与异染色质形成的组蛋白修饰蛋白由DNA结合蛋白招募到异染色质.此外,裂殖酵母也利用RNA干扰系统招募组蛋白修饰蛋白.  相似文献   

12.
Sister chromatids are physically connected by cohesin complexes. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic and meiotic spindle. In many species, cohesion between chromosome arms is partly dissolved in prophase of mitosis, whereas cohesion is protected at centromeres until the onset of anaphase. In vertebrates, the protein Sgo1, protein phosphatase 2A, and several other proteins are required for protection of centromeric cohesin in early mitosis. In fission yeast, the recruitment of heterochromatin protein Swi6/HP1 to centromeres by the histone-methyltransferase Clr4/Suv39h is required for enrichment of cohesin at centromeres already in interphase. We have tested if the Suv39h–HP1 histone methylation pathway is also required for enrichment and mitotic protection of cohesin at centromeres in mammalian cells. We show that cohesin and HP1 proteins partially colocalize at mitotic centromeres but that cohesin localization is not detectably altered in mouse embryonic fibroblasts that lack Suv39h genes and in which HP1 proteins can, therefore, not be properly enriched in pericentric heterochromatin. Our data indicate that the Suv39h–HP1 pathway is not essential for enrichment and mitotic protection of cohesin at centromeres in mammalian cells.  相似文献   

13.
Heterochromatin in S. pombe is associated with gene silencing at telomeres, the mating locus and centromeres. The compact heterochromatin structure raises the question how it unpacks and reforms during DNA replication. We show that the essential DNA replication factor Cdc18 (CDC6) associates with heterochromatin protein 1 (Swi6) in vivo and in vitro. Biochemical mapping and mutational analysis of the association domains show that the N-terminus of Cdc18 interacts with the chromoshadow domain of Swi6. Mutations in Swi6 that disrupt this interaction disrupt silencing and delay replication in the centromere. A mutation cdc18-I43A that reduces Cdc18 association with Swi6 has no silencing defect at the centromere, but changes Swi6 distribution and accelerates the timing of centromere replication. We suggest that fine tuning of Swi6 association at replication origins is important for negative as well as positive control of replication initiation.  相似文献   

14.
Verdel A  Moazed D 《FEBS letters》2005,579(26):5872-5878
Heterochromatin is an epigenetically heritable and conserved feature of eukaryotic chromosomes with important roles in chromosome segregation, genome stability, and gene regulation. The formation of heterochromatin involves an ordered array of chromatin changes, including histone deacetylation, histone H3-lysine 9 methylation, and recruitment of histone binding proteins such as Swi6/HP1. Recent discoveries have uncovered a role for the RNA interference (RNAi) pathway in heterochromatin assembly in the fission yeast Schizosaccharomyces pombe and other eukaryotes. Purification of two RNAi complexes, RITS and RDRC, from fission yeast has provided further insight into the mechanism of RNAi-mediated heterochromatin assembly. These discoveries have given rise to a model in which small interfering RNA molecules act as specificity factors that initiate epigenetic chromatin modifications and double strand RNA synthesis at specific chromosome regions.  相似文献   

15.
16.
17.
The Heterochromatin Protein 1 family   总被引:6,自引:0,他引:6  
  相似文献   

18.
19.
Swi6/HP1, an evolutionarily conserved protein, is critical for heterochromatin assembly in fission yeast and higher eukaryotes. In fission yeast, histone deacetylation by histone deacetylases is thought to be followed by H3-Lys-9 methylation by the histone methyltransferase Clr4/Suv39H1. H3-Lys-9-Me2 interacts with the chromodomain of Swi6/HP1. Swi6/HP1 is thought to act downstream of Clr4/Suv39, and further self-association of Swi6/HP1 is assumed to stabilize the heterochromatin structure. Here, we show that the self-association-defective mutant of Swi6 does not interact with Clr4. It not only fails to localize to heterochromatin loci but also interferes with heterochromatic localization of H3-Lys-9-Me2 (and thereby Clr4) and the endogenous Swi6 in a dominant negative manner. Thus, self-association of Swi6/HP1 helps in binding to and recruitment of Clr4 and thereby in establishment and maintenance of heterochromatin by a concerted rather than a sequential mechanism.  相似文献   

20.
Pericentric constitutive heterochromatin surrounds centromeric regions and is important for centromere function and chromatid cohesion. HP1 (heterochromatin protein 1), a homolog of yeast Swi6, has been shown to be indispensible for proper heterochromatin structure and function. In mammalian somatic cells, two HP1 isoforms, HP1α and HP1β, are constitutively present in pericentric heterochromatin until late G2, when they dissociate from heterochromatin. Subsequently, they re-associate with heterochromatin at late anaphase. In one-cell mouse embryos, pericentric heterochromatin has a unique configuration and features. It does not form heterochromatin clusters observed in somatic cells and known as chromocenters. Instead, in both pronuclei, it surrounds nucleolar precursor bodies (NBPs), forming ring-like structures. These regions contain HP1β but lack HP1α in both pronuclei. In subsequent interphases, HP1β is constitutively found in heterochromatin until the blastocyst stage. It is not known when HP1α appears and what is its function in early mouse embryos. Here, we show that HP1α appears for the first time at late S phase of two-cell stage, at the time when pericentric heterochromatin is replicated. Its appearance is regulated at the level of translation. In two-cell embryos, the amount of HP1α that can bind to these regions is regulated by phosphorylation of serine 10 of histone H3 (H3S10Ph). Elimination of HP1α by siRNA interfered with centromere relocation from heterochromatin surrounding NPBs to pro-chromocenters at the two-cell stage but did not affect preimplantation develoment to the blastocyst stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号