首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spiroplasma endosymbionts are maternally inherited microorganisms which infect many arthropod species. In some Drosophila species, it acts as a reproductive manipulator, spreading in populations by killing the sons of infected mothers. Distinct Drosophila melanogaster populations from Brazil exhibit variable male-killing Spiroplasma prevalences. In this study, we investigated the presence of variability for the male-killing phenotype among Drosophila and/or Spiroplasma strains and verified if it correlates with the endosymbiont prevalence in natural populations. For that, we analyzed the male-killing expression when Spiroplasma strains from different populations were transferred to a standard D. melanogaster line (Canton-S) and when a common Spiroplasma strain was transferred to different wild-caught D. melanogaster lines, both at optimal and challenging temperatures for the bacteria. No variation was observed in the male-killing phenotype induced by different Spiroplasma strains. No phenotypic variability among fly lines was detected at optimal temperature (23 °C), as well. Conversely, significant variation in the male-killing expression was revealed among D. melanogaster lines at 18.5 °C, probably caused by imperfect transmission of the endosymbiont. Distinct lines differed in their average sex ratios as well as in the pattern of male-killing expression as the infected females aged. Greater variation occurred among lines from one locality, although there was no clear correlation between the male-killing intensity and the endosymbiont prevalence in each population. Imperfect transmission or male killing may also occur in the field, thus helping to explain the low or intermediate prevalences reported in nature. We discuss the implications of our results for the dynamics of male-killing Spiroplasma in natural populations.  相似文献   

2.
Interspecific transmission of endosymbiotic Spiroplasma by mites   总被引:1,自引:0,他引:1       下载免费PDF全文
The occurrence of closely related strains of maternally transmitted endosymbionts in distantly related insect species indicates that these infections can colonize new host species by lateral transfer, although the mechanisms by which this occurs are unknown. We investigated whether ectoparasitic mites, which feed on insect haemolymph, can serve as interspecific vectors of Spiroplasma poulsonii, a male-killing endosymbiont of Drosophila. Using Spiroplasma-specific primers for PCR, we found that mites can pick up Spiroplasma from infected Drosophila nebulosa females and subsequently transfer the infection to Drosophila willistoni. Some of the progeny of the recipient D. willistoni were infected, indicating successful maternal transmission of the Spiroplasma within the new host species. However, the transmission rate of the infection from recipient flies to their offspring was low, perhaps due to low Spiroplasma density in the recipient flies.  相似文献   

3.
Spiroplasma is widespread as a heritable bacterial symbiont in insects and some other invertebrates, in which it sometimes acts as a male-killer and causes female-biased sex ratios in hosts. Besides Wolbachia, it is the only heritable bacterium known from Drosophila, having been found in 16 of over 200 Drosophila species screened, based on samples of one or few individuals per species. To assess the extent to which Spiroplasma infection varies within and among species of Drosophila, intensive sampling consisting of 50–281 individuals per species was conducted for natural populations of 19 Drosophila species. Infection rates varied among species and among populations of the same species, and 12 of 19 species tested negative for all individuals. Spiroplasma infection never was fixed, and the highest infection rates were 60% in certain populations of D. hydei and 85% in certain populations of D. mojavensis. In infected species, infection rates were similar for males and females, indicating that these Spiroplasma infections do not confer a strong male-killing effect. These findings suggest that Spiroplasma has other effects on hosts that allow it to persist, and that environmental or host variation affects transmission or persistence leading to differences among populations in infection frequencies.  相似文献   

4.
The phylogenetic incongruence between insects and their facultative maternally transmitted endosymbionts indicates that these infections are generally short‐lived evolutionarily. Therefore, long‐term persistence of many endosymbionts must depend on their ability to colonize and spread within new host species. At least 17 species of Drosophila are infected with endosymbiotic Spiroplasma that have various phenotypic effects. We transinfected five strains of Spiroplasma from three divergent clades into Drosophila neotestacea to test their capacity to spread in a novel host. A strain that causes male killing in Drosophila melanogaster (its native host) also does so in D. neotestacea, even though these host species diverged 40–60 mya. A strain native to D. neotestacea (designated sNeo) and the two other strains of the poulsonii clade of Spiroplasma confer resistance to wasp parasitism, suggesting that this trait may be ancestral within this clade of Spiroplasma. Conversely, no strain other than sNeo conferred resistance to the sterilizing effects of nematode parasitism, suggesting that nematode resistance is a recently derived condition. The apparent addition of nematode resistance to a Spiroplasma lineage that already confers resistance to wasp parasitism suggests endosymbionts can increase the repertoire of traits conducive to their spread. The capacity of an endosymbiont to undergo maternal transmission and express adaptive phenotypes in novel hosts, without requiring a period of host–symbiont co‐evolution, enables the spread of such symbionts immediately after the colonization of a new host. This could be critical for the macroevolutionary persistence of facultative endosymbionts whose sojourn times within individual host species are relatively brief.  相似文献   

5.
Male-killing phenotypes are found in a variety of insects and are often associated with maternally inherited endosymbiotic bacteria. In several species of Drosophila, male-killing endosymbionts of the genus Spiroplasma have been found at low frequencies (0.1 to 3%). In this study, spiroplasma infection without causing male-killing was shown to be prevalent (23 to 66%) in Japanese populations of Drosophila hydei. Molecular phylogenetic analyses showed that D. hydei was infected with a single strain of spiroplasma, which was closely related to male-killing spiroplasmas from other Drosophila species. Artificial-transfer experiments suggested that the spiroplasma genotype rather than the host genotype was responsible for the absence of the male-killing phenotype. Infection densities of the spiroplasma in the natural host, D. hydei, and in the artificial host, Drosophila melanogaster, were significantly lower than those of the male-killing spiroplasma NSRO, which was in accordance with the hypothesis that a threshold infection density is needed for the spiroplasma-induced male-killing expression.  相似文献   

6.
Maternally transmitted endosymbiotic bacteria of the genus Spiroplasma associate with numerous insect species, including the genus Drosophila. Among the Spiroplasma strains associated with Drosophila, several manipulate their host??s reproduction by killing the male offspring of the infected females. Although the male-killing mechanism is not well understood, previous studies of non-native strains transferred to D. melanogaster (strain Oregon-R) indicate that the male-killing strain achieves higher densities than two non-male-killing strains. Whether this pattern of higher male-killing strain densities occurs in other host-symbiont strain combinations is not known. Herein, we used quantitative PCR to examine infection densities of one non-male-killing strain native to D. hydei (Hyd1), and two male-killing strains; one native to D. nebulosa (NSRO), and one native to D. melanogaster (MSRO; recently discovered), upon artificial transfer to D. melanogaster (strain Canton-S). Infection densities were examined at four weekly intervals in adult flies, across three consecutive generations following artificial transfer. Infection densities of the non-male-killing strain were significantly lower than those of the two male killers immediately after adult emergence. At later time points, however, the non-male-killing strain (Hyd1) is capable of proliferating to densities similar to those of the two male-killing strains (NSRO and MSRO) in D. melanogaster (Canton-S). We also examined the effect of co-infection by the heritable bacterium Wolbachia, on Spiroplasma densities and male-killing ability. Wolbachia had little to no effect of Spiroplasma densities, but the male-killing ability of MSRO was lower in the presence of Wolbachia. Generation post-infection had little effect on Spiroplasma densities, but affected the male-killing ability.  相似文献   

7.
Ecologically important traits of insects are often affected by facultative bacterial endosymbionts. This is best studied in the pea aphid Acyrthosiphon pisum, which is frequently infected by one or more of eight facultative symbiont species. Many of these symbiont species have been shown to provide one ecological benefit, but we have little understanding of the range of effects that a single strain can have. Here, we describe the phenotypes conferred by three strains of the recently discovered bacterium known as X‐type (Enterobacteriaceae), each in their original aphid genotype which also carries a Spiroplasma symbiont. All comparisons are made between aphids that are coinfected with Spiroplasma and X‐type and aphids of the same genotype that harbour only Spiroplasma. We show that in all cases, infection with X‐type protects aphids from the lethal fungal pathogen Pandora neoaphidis, and in two cases, resistance to the parasitoid Aphidius ervi also increases. X‐type can additionally affect aphid stress responses – the presence of X‐type increased reproduction after the aphids were heat‐stressed. Two of the three strains of X‐type are able to provide all of these benefits. Under benign conditions, the aphids tended to suffer from reduced fecundity when harbouring X‐type, a mechanism that might maintain intermediate frequencies in field populations. These findings highlight that a single strain of a facultative endosymbiont has the potential to provide diverse benefits to its aphid host.  相似文献   

8.
John Jaenike 《Oikos》2009,118(3):353-362
Many insect species are infected with maternally transmitted endosymbionts, the most widely documented being Wolbachia . The rate of spread and equilibrium of prevalence of these infections depend on two parameters – maternal transmission fidelity and relative fitness of infected cytoplasmic lineages. Both transmission fidelity and the phenotypic effect of endosymbionts often increase with endosymbiont density within hosts. Thus, the dynamics of infection prevalence in host populations depends on processes affecting within-host density of endosymbionts. In theory, the equilibrium prevalence of infection by male-killing endosymbionts is much more sensitive to changes in transmission fidelity and relative fitness than is that of endosymbionts that cause cytoplasmic incompatibility. In natural populations, male-killers exhibit much greater temporal and spatial variation in the prevalence of infection than do endosymbionts that cause cytoplasmic incompatibility. Thus, the population dynamics of endosymbiont infections, especially those that cause male-killing, is likely to be governed by environmental and genetic variables that affect within-host density of these infections.  相似文献   

9.
J Xie  S Butler  G Sanchez  M Mateos 《Heredity》2014,112(4):399-408
Maternally transmitted associations between endosymbiotic bacteria and insects are diverse and widespread in nature. Owing to imperfect vertical transmission, many heritable microbes have evolved compensational mechanisms to enhance their persistence in host lineages, such as manipulating host reproduction and conferring fitness benefits to host. Symbiont-mediated defense against natural enemies of hosts is increasingly recognized as an important mechanism by which endosymbionts enhance host fitness. Members of the genus Spiroplasma associated with distantly related Drosophila hosts are known to engage in either reproductive parasitism (i.e., male killing) or defense against natural enemies (the parasitic wasp Leptopilina heterotoma and a nematode). A male-killing strain of Spiroplasma (strain Melanogaster Sex Ratio Organism (MSRO)) co-occurs with Wolbachia (strain wMel) in certain wild populations of the model organism Drosophila melanogaster. We examined the effects of Spiroplasma MSRO and Wolbachia wMel on Drosophila survival against parasitism by two common wasps, Leptopilina heterotoma and Leptopilina boulardi, that differ in their host ranges and host evasion strategies. The results indicate that Spiroplasma MSRO prevents successful development of both wasps, and confers a small, albeit significant, increase in larva-to-adult survival of flies subjected to wasp attacks. We modeled the conditions under which defense can contribute to Spiroplasma persistence. Wolbachia also confers a weak, but significant, survival advantage to flies attacked by L. heterotoma. The host protective effects exhibited by Spiroplasma and Wolbachia are additive and may provide the conditions for such cotransmitted symbionts to become mutualists. Occurrence of Spiroplasma-mediated protection against distinct parasitoids in divergent Drosophila hosts suggests a general protection mechanism.  相似文献   

10.
The small brown planthopper Laodelphax striatellus (Hemiptera: Delphacidae) is reported to have the endosymbiont Wolbachia, which shows a strong cytoplasmic incompatibility (CI) between infected males and uninfected females. In the 2000s, female‐biased L. striatellus populations were found in Taiwan, and this sex ratio distortion was the result of male‐killing induced by the infection of another endosymbiont, Spiroplasma. Spiroplasma infection is considered to negatively affect both L. striatellus and Wolbachia because the male‐killing halves the offspring of L. striatellus and hinders the spread of Wolbachia infection via CI. Spiroplasma could have traits that increase the fitness of infected L. striatellus and/or coexisting organisms because the coinfection rates of Wolbachia and Spiroplasma were rather high in some areas. In this study, we investigated the influences of the infection of these two endosymbionts on the development, reproduction, and insecticide resistance of L. striatellus in the laboratory. Our results show that the single‐infection state of Spiroplasma had a negative influence on the fertility of L. striatellus, while the double‐infection state had no significant influence. At late nymphal and adult stages, the abundance of Spiroplasma was lower in the double‐infection state than in the single‐infection state. In the double‐infection state, the reduction of Spiroplasma density may be caused by competition between the two endosymbionts, and the negative influence of Spiroplasma on the fertility of host may be relieved. The resistance of L. striatellus to four insecticides was compared among different infection states of endosymbionts, but Spiroplasma infection did not contribute to increase insecticide resistance. Because positive influences of Spiroplasma infection were not found in terms of the development, reproduction, and insecticide resistance of L. striatellus, other factors improving the fitness of Spiroplasma‐infected L. striatellus may be related to the high frequency of double infection in some L. striatellus populations.  相似文献   

11.
Maternally transmitted symbionts persist over macroevolutionary timescales by undergoing occasional lateral transfer to new host species. To invade a new species, a symbiont must survive and reproduce in the new host, undergo maternal transmission, and confer a selective benefit sufficient to overcome losses due to imperfect maternal transmission. Drosophila neotestacea is naturally infected with a strain of Spiroplasma that restores fertility to nematode‐parasitized females, which are otherwise sterilized by parasitism. We experimentally transferred Spiroplasma from D. neotestacea to four other species of mycophagous Drosophila that vary in their ability to resist and/or tolerate nematode parasitism. In all four species, Spiroplasma achieved within‐host densities and experienced rates of maternal transmission similar to that in D. neotestacea. Spiroplasma restored fertility to nematode‐parasitized females in one of these novel host species. Based on estimates of maternal transmission fidelity and the expected benefit of Spiroplasma infection in the wild, we conclude that Spiroplasma has the potential to spread and become abundant within Drosophila putrida, which is broadly sympatric with D. neotestacea and in which females are rendered completely sterile by nematode parasitism. Thus, a major adaptation within D. putrida could arise via lateral transmission of a heritable symbiont from D. neotestacea.  相似文献   

12.
The heritable endosymbiont Spiroplasma infects many insects and has repeatedly evolved the ability to protect its hosts against different parasites. Defenses do not come for free to the host, and theory predicts that more costly symbionts need to provide stronger benefits to persist in host populations. We investigated the costs and benefits of Spiroplasma infections in pea aphids (Acyrthosiphon pisum), testing 12 bacterial strains from three different clades. Virtually all strains decreased aphid lifespan and reproduction, but only two had a (weak) protective effect against the parasitoid Aphidius ervi, an important natural enemy of pea aphids. Spiroplasma‐induced fitness costs were variable, with strains from the most slowly evolving clade reaching higher titers and curtailing aphid lifespan more strongly than other strains. Some Spiroplasma strains shared their host with a second endosymbiont, Regiella insecticola. Although the result of an unfortunate handling error, these co‐infections proved instructive, because they showed that the cost of infection with Spiroplasma may be attenuated in the presence of Regiella. These results suggest that mechanisms other than protection against A. ervi maintain pea aphid infections with diverse strains of Spiroplasma, and that studying them in isolation will not provide a complete picture of their effects on host fitness.  相似文献   

13.
Endosymbionts sometimes help their hosts resist parasites, but does infection of pea aphids (Acyrthosiphon pisum) with different strains of the endosymbiont Spiroplasma confer fitness benefits that offset the costs? Mathé‐Hubert et al. found that across four life‐history traits, Spiroplasma infection induced negative effects on host fitness when compared to controls. Only two of 12 strains of Spiroplasma showed a marginal protective effect against host parasitism by Aphidius ervi, implying Spiroplasma infection is almost entirely detrimental to pea aphid host fitness.  相似文献   

14.
Double infections of Wolbachia and Spiroplasma are frequent in natural populations of Tetranychus truncatus, a polyphagous mite species that has been a dominant species in China since 2009. However, little is known about the causes and ecological importance of such coexistences. In this study, we established T. truncatus strains with different infection types and then inferred the impact of the two endosymbionts on host reproduction and fitness. Double infection induced cytoplasmic incompatibility, which was demonstrated by reduction in egg hatchability of incompatible crosses. However, doubly infected females produced more eggs relative to other strains. Wolbachia and Spiroplasma did not affect host survival, whereas doubly infected females and males developed faster than other strains. Such reproduction and fitness benefits provided by double infections may be associated with the lower densities of each symbiont, and the quantitative results also confirmed competition between Wolbachia and Spiroplasma in doubly infected females. These symbiont‐conferred beneficial effects maintain stable prevalence of the symbionts and also help drive T. truncatus outbreaks in combination with other environmental factors.  相似文献   

15.
According to evolutionary theory, sex ratio distortions caused by reproductive parasites such as Wolbachia and Spiroplasma are predicted to be rapidly normalized by the emergence of host nuclear suppressors. However, such processes in the evolutionary arms race are difficult to observe because sex ratio biases will be promptly hidden and become superficially unrecognizable. The evolution of genetic suppressors has been reported in just two insect species so far. In the small brown planthopper, Laodelphax striatellus, female-biases caused by Spiroplasma, which is a ‘late’ male-killer, have been found in some populations. During the continuous rearing of L. striatellus, we noted that a rearing strain had a 1 : 1 sex ratio even though it harboured Spiroplasma. Through introgression crossing experiments with a strain lacking suppressors, we revealed that the L. striatellus strain had the zygotic male-killing suppressor acting as a dominant trait. The male-killing phenotype was hidden by the suppressor even though Spiroplasma retained its male-killing ability. This is the first study to demonstrate the existence of a late male-killing suppressor and its mode of inheritance. Our results, together with those of previous studies, suggest that the inheritance modes of male-killing suppressors are similar regardless of insect order or early or late male killing.  相似文献   

16.
Insect microbe associations are diverse, widespread, and influential. Among the fitness effects of microbes on their hosts, defense against natural enemies is increasingly recognized as ubiquitous, particularly among those associations involving heritable, yet facultative, bacteria. Protective mutualisms generate complex ecological and coevolutionary dynamics that are only beginning to be elucidated. These depend in part on the degree to which symbiont‐mediated protection exhibits specificity to one or more members of the natural enemy community. Recent findings in a well‐studied defensive mutualism system (i.e., aphids, bacteria, parasitoid wasps) reveal repeated instances of evolution of susceptibility or resistance to defensive bacteria by parasitoids. This study searched for similar patterns in an emerging model system for defensive mutualisms: the interaction of Drosophila, bacteria in the genus Spiroplasma, and wasps that parasitize larval stages of Drosophila. Previous work indicated that three divergent species of parasitic wasps are strongly inhibited by the presence of Spiroplasma in three divergent species of Drosophila, including D. melanogaster. The results of this study uncovered two additional wasp species that are susceptible to Spiroplasma and two that are unaffected by Spiroplasma, implying at least two instances of loss or gain of susceptibility to Spiroplasma among larval parasitoids of Drosophila.  相似文献   

17.
Bacterial endosymbionts are common among arthropods, and maternally inherited forms can affect the reproductive and behavioural traits of their arthropod hosts. The prevalence of bacterial endosymbionts and their role in scorpion evolution have rarely been investigated. In this study, 61 samples from 40 species of scorpion in the family Vaejovidae were screened for the presence of the bacterial endosymbionts Cardinium, Rickettsia, Spiroplasma and Wolbachia. No samples were infected by these bacteria. However, one primer pair specifically designed to amplify Rickettsia amplified nontarget genes of other taxa. Similar off‐target amplification using another endosymbiont‐specific primer was also found during preliminary screenings. Results caution against the overreliance on previously published screening primers to detect bacterial endosymbionts in host taxa and suggest that primer specificity may be higher in primers targeting nuclear rather than mitochondrial genes.  相似文献   

18.
Cardinium and Wolbachia are maternally inherited bacterial symbionts of arthropods that can manipulate host reproduction by increasing the fitness of infected females.Here,we report that Cardinium and Wolbachia coinfection induced male-killing and cytoplasmic incompatibility(CI)when they coexisted in a cryptic species of whitefly,Bemisia tabaci Asia II7.Cardinium and Wolbachia symbionts were either singly or simul-taneously localized in the bacteriocytes placed in the abdomen of B.tabaci nymphs and adults.Cardinium-Wolbachia coinfection induced male-killing and resulted in a higher female sex ratio in the intraspecific amphigenetic progeny of Asia II7 IcwH and IcwL lines;interestingly,male-illing induction was enhanced with increased Cardinium titer.Moreover,single infection of Wolbachia induced partial CI in the Asia II7 Iw line and resulted in reduced fecundity,higher embryonic mortality,and lower female sex ratio.The uninfected Asia II7 Iu line had significantly higher fecundity,lower embryonic and nymphal mortalities,and a lower level of CI than both the Wolbachia infected Asia II7 Iw line and the Cardinium--Wolbachia-coinfected Asia II7 IcwH line.Our findings indicate that Cardinium-Wolbachia coinfection induced male-killing,which may have had antag-onistic effects on Wolbachia-induced CI in the Asia II7 whiteflies.For the first time,our study revealed that B.tabaci Asia II7 reproduction is co-manipulated by Cardinium and Wolbachia endosymbionts.  相似文献   

19.
The morphology of the bacterial endosymbiont of Volvox carteri Stein (Clone KA-1) was studied with the electron microscope. Endosymbionts were found in the cytoplasm of somatic cells, gonidia and sperm, but never in nuclei, chloroplasts or mitochondria. DNA preparations contained, an extra DNA species assumed to be endosymbiont DNA. Attempts to isolate the endosymbionts or to “cure” the alga with antibiotics were unsuccessful. All progeny from crosses of infected and noninfected strains contained the endosymbiont.  相似文献   

20.
The bacterial symbiont Wolbachia can protect insects against viral pathogens, and the varying levels of antiviral protection are correlated with the endosymbiont load within the insects. To understand why Wolbachia strains differ in their antiviral effects, we investigated the factors controlling Wolbachia density in five closely related strains in their natural Drosophila hosts. We found that Wolbachia density varied greatly across different tissues and between flies of different ages, and these effects depended on the host–symbiont association. Some endosymbionts maintained largely stable densities as flies aged while others increased, and these effects in turn depended on the tissue being examined. Measuring Wolbachia rRNA levels in response to viral infection, we found that viral infection itself also altered Wolbachia levels, with Flock House virus causing substantial reductions in symbiont loads late in the infection. This effect, however, was virus‐specific as Drosophila C virus had little impact on Wolbachia in all of the five host systems. Because viruses have strong tissue tropisms and antiviral protection is thought to be cell‐autonomous, these effects are likely to affect the virus‐blocking phenomenon. However, we were unable to find any evidence of a correlation between Wolbachia and viral titres within the same tissues. We conclude that Wolbachia levels within flies are regulated in a complex host–symbiont–virus‐dependent manner and this trinity is likely to influence the antiviral effects of Wolbachia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号