首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

C-reactive protein (CRP) is a predictor of cardiovascular risk. It circulates as a pentameric protein in plasma. Recently, a potential dissociation mechanism from the disc-shaped pentameric CRP (pCRP) into single monomers (monomeric or mCRP) has been described. It has been shown that mCRP has strong pro-inflammatory effects on monocytes. To further define the role of mCRP in determining monocyte phenotype, the effects of CRP isoforms on THP-1 protein expression profiles were determined. The hypothesis to be tested was that mCRP induces specific changes in the protein expression profile of THP-1 cells that differ from that of pCRP.

Methods

Protein cell lysates from control and mCRP, pCRP or LPS-treated THP-1 cells were displayed using 2-dimensional SDS PAGE and compared. Differentially expressed proteins were identified by MALDI-TOF MS and confirmed by Western blotting.

Results

mCRP significantly up-regulates ubiquitin-activating enzyme E1, a member of the ubiquitin-proteasome system in THP-1 monocytes. Furthermore, HSP 70, alpha-actinin-4 (ACTN4) and alpha-enolase/enolase 1 were upregulated. The proteomic profile of LPS and pCRP treated monocytes differ significantly from that of mCRP.

Conclusion

The data obtained in this study support the hypothesis that isoform-specific effects of CRP may differentially regulate the phenotype of monocytes.  相似文献   

2.
The prototypic acute phase reactant C-reactive protein (CRP) is not only a marker but also a potential contributor to inflammatory diseases. CRP exists as the circulating native, pentameric CRP (pCRP) and the monomeric isoform (mCRP), formed as a result of a dissociation process of pCRP. mCRP is highly pro-inflammatory, but pCRP is not. The mechanism of pro-inflammatory action of mCRP is unclear. We studied the role of integrins in pro-inflammatory action of mCRP. Docking simulation of interaction between mCRP and integrin αvβ3 predicted that mCRP binds to αvβ3 well. We found that mCRP actually bound to integrins αvβ3 and α4β1 well. Antagonists to αvβ3 or α4β1 effectively suppressed the interaction, suggesting that the interaction is specific. Using an integrin β1 mutant (β1-3-1) that has a small fragment from the ligand binding site of β3, we showed that mCRP bound to the classical RGD-binding site in αvβ3. We studied the role of integrins in CRP signaling in monocytic U937 cells. Integrins αvβ3 and α4β1 specifically mediated binding of mCRP to U937 cells. mCRP induced AKT phosphorylation, but not ERK1/2 phosphorylation, in U937 cells. Notably, mCRP induced robust chemotaxis in U937 cells, and antagonists to integrins αvβ3 and α4β1 and an inhibitor to phosphatidylinositide 3-kinase, but not an MEK inhibitor, effectively suppressed mCRP-induced chemotaxis in U937 cells. These results suggest that the integrin and AKT/phosphatidylinositide 3-kinase pathways play a role in pro-inflammatory action of mCRP in U937 cells. In contrast, pCRP is predicted to have a limited access to αvβ3 due to steric hindrance in the simulation. Consistent with the prediction, pCRP was much less effective in integrin binding, chemotaxis, or AKT phosphorylation. These findings suggest that the ability of CRP isoforms to bind to the integrins is related to their pro-inflammatory action.  相似文献   

3.
C-reactive protein (CRP) is a pentameric oligoprotein composed of identical 23 kD subunits which can be modified by urea-chelation treatment to a form resembling the free subunit termed modified CRP (mCRP). mCRP has distinct physicochemical, antigenic, and biologic activities compared to CRP. The conditions under which CRP is converted to mCRP, and the molecular forms in the transition, are important to better understand the distinct properties of mCRP and to determine if the subunit form can convert back to the pentameric native CRP form. This study characterized the antigenic and conformational changes associated with the interconversion of CRP and mCRP. The rate of dissociation of CRP protomers into individual subunits by treatment in 8 M urea–10 mM EDTA solution was rapid and complete in 2 min as assayed by an enzyme-linked immunofiltration assay using monoclonal antibodies specific to the mCRP. Attempts to reconstitute pentameric CRP from mCRP under renaturation conditions were unsuccessful, resulting in a protein retaining exclusively mCRP characteristics. Using two-dimensional urea gradient gel electrophoresis, partial rapid unfolding of the pentamer occurred above 3 M urea, a subunit dissociation at 6 M urea, and further subunit unfolding at 6–8 M urea concentrations. The urea gradient electrophoresis results suggest that there are only two predominant conformational states occurring at each urea transition concentration. Using the same urea gradient electrophoresis conditions mCRP migrated as a single molecular form at all urea concentrations showing no evidence for reassociation to pentameric CRP or other aggregate form. The results of this study show a molecular conversion for an oligomeric protein (CRP) to monomeric subunits (mCRP) having rapid forward transition kinetics in 8 M urea plus chelator with negligible reversibility.  相似文献   

4.
In clinical practices, the examination of pentamer C-reactive protein (pCRP) is commonly used as a prognostic indicator of the risk of a patient developing cardiovascular disease (CVD). Structural modification of pCRP produces a modified CRP (mCRP) which exhibits different biological activities in the body. In recent years, mCRP has come to be regarded as a more powerful inducer than pCRP, and hence mCRP measurement has emerged as an important indicator for assessing the risk of developing CVD. The surface plasmon resonance (SPR) biosensing technique can be employed to increase the detection accuracy and real-time response when sensing pCRP or mCRP. In this study, three monoclonal antibodies (Mabs), C8, 8D8, and 9C9, are immobilized on a protein G layer for subsequent CRP detection. The experimental results reveal that the Mab C8 reacts with both pCRP and mCRP, the Mab 8D8 with pCRP, and the Mab 9C9 with mCRP. No false signals caused by non-specific binding are observed. When detecting pCRP using Mab C8, the SPR bioassay provides sufficient sensitivity to evaluate whether or not a patient is at risk of developing CVD. SPR biosensing provides a viable and accurate approach for the real-time evaluation of pCRP and mCRP levels, and is therefore of considerable benefit in clinical examinations of CPR.  相似文献   

5.
Native C-reactive protein (CRP) is a planar pentamer of identical subunits expressed at high serum levels during the acute phase of inflammation. At inflammatory sites, an isomeric form termed modified CRP (mCRP) is expressed and reveals neoantigenic epitopes associated with modified monomeric CRP subunits. mCRP cannot assume the native pentameric conformation but rather forms a nonpentameric aggregate of monomers. While native CRP inhibits neutrophil movement in vitro and in vivo, the effect of mCRP on neutrophil movement has not been reported. To model the biological function and biochemical interaction of mCRP on neutrophils, in vitro chemotaxis and binding experiments were performed using mCRP. Reported here, mCRP effectively inhibited fMLP-induced chemotaxis similar to native CRP. Additionally, mCRP increased binding of labeled native CRP to neutrophils. This increased binding occurred by direct protein-protein interaction of the C-terminus thereby implicating the CRP(199-206) sequence. Binding of mCRP to neutrophils was blocked by anti-CD16 monoclonal antibody whereas native CRP was not. These results suggest that modified forms of CRP inhibit chemotaxis, a function similar to native CRP, but that mCRP and native molecule bind different receptors on human neutrophils.  相似文献   

6.
Human neutrophil granulocytes die rapidly, and their survival is contingent upon rescue from programmed cell death by signals from the environment. Here we report that a novel signal for delaying neutrophil apoptosis is the classic acute phase reactant, C-reactive protein (CRP). However, this anti-apoptotic activity is expressed only when the cyclic pentameric structure of CRP is lost, resulting in formation of modified or monomeric CRP (mCRP), which may be formed in inflamed tissues. By contrast, native pentameric CRP and CRP peptides 77-82, 174-185, and 201-206 failed to affect neutrophil apoptosis. The apoptosis delaying action of mCRP was markedly attenuated by an antibody against the low affinity IgG immune complex receptor (CD16) but not by an anti-CD32 antibody. mCRP evoked a transient concurrent activation of the extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase/Akt signaling pathways, leading to inhibition of caspase-3 and consequently to delaying apoptosis. Consistently, pharmacological inhibition of either ERK or Akt reversed the anti-apoptotic action of mCRP; however, they did not produce additive inhibition. Thus, mCRP, but not pentameric CRP or peptides derived from CRP, promotes neutrophil survival and may therefore contribute to amplification of the inflammatory response.  相似文献   

7.
The classic acute-phase reactant C-reactive protein (CRP) is a cyclic pentameric protein that diminishes neutrophil accumulation in inflamed tissues. When the pentamer is dissociated, CRP subunits undergo conformational rearrangement that results in expression of a distinctive isomer with unique antigenic and physicochemical characteristics (termed modified CRP (mCRP)). Recently, mCRP was detected in the wall of normal human blood vessels. We studied the impact and mechanisms of action of mCRP on expression of adhesion molecules on human neutrophils and their adhesion to human coronary artery endothelial cells. Both CRP and mCRP (0.1-200 microg/ml) down-regulated neutrophil L-selectin expression in a concentration-dependent fashion. Furthermore, mCRP, but not CRP, up-regulated CD11b/CD18 expression and stimulated neutrophil extracellular signal-regulated kinase activity, which was accompanied by activation of p21(ras) oncoprotein, Raf-1, and mitogen-activated protein kinase kinase. These actions of mCRP were sensitive to the mitogen-activated protein kinase kinase inhibitor PD98059. mCRP markedly enhanced attachment of neutrophils to LPS-activated human coronary artery endothelial when added together with neutrophils. This effect of mCRP was attenuated by an anti-CD18 mAb. Thus, loss of pentameric symmetry in CRP is associated with appearance of novel bioactivities in mCRP that enhance neutrophil localization and activation at inflamed or injured vascular sites.  相似文献   

8.
C-反应蛋白——关联心血管疾病与炎症的重要分子   总被引:1,自引:0,他引:1  
炎症在心血管疾病(cardiovascular disease,CVD)的各个阶段中均发挥着重要作用。C-反应蛋白(C-reactive protein,CRP)是一种典型的人类急性期蛋白,由5个相同的亚基构成,在临床上被广泛用作炎症的非特异性标识物。近年的研究显示,CRP不仅是CVD发病风险的灵敏标识,而且直接参与调控与CVD相关的炎症过程。基于对已有研究发现的回顾和分析,文章指出CRP的单体形式(monomeric CRP, mCRP)是调控局部炎症过程的主要CRP异构体。  相似文献   

9.
Wu Y  Ji SR  Wang HW  Sui SF 《Biochemistry. Biokhimii?a》2002,67(12):1377-1382
C-Reactive protein (CRP) is composed of five identical noncovalently linked monomers and characterized as an important acute-phase protein. The CRP subunit obtained by denaturing treatments, which is termed modified CRP, has also been widely studied. In the current work, we found that there exists some degree of natural dissociation of CRP in stock solution. This dissociation is critically dependent on the absence of Ca2+. Low pH could enhance the dissociation of CRP, while ionic strength has little effect. Anilinonaphthalenesulfonate (ANS) fluorescence detections indicate that the exposure of hydrophobic surface increases during the dissociation. Acidic pH conditions also induce an increase in ANS fluorescence. This suggests that hydrophobic interactions between CRP subunits may contribute to the study of its pentameric structure. Surface plasmon resonance experiments indicate that monomeric CRP does not specifically bind to phosphatidylcholine-containing membrane as native CRP does. Electron microscopy shows that monomeric CRP binds to negatively charged lipid through electrostatic forces, and such lipid may induce the dissociation of CRP due to the acidic pH in the diffuse double layer near the membrane.  相似文献   

10.
11.
C反应蛋白(C-reactiveprotein,CRP)是人类非特异性急性期蛋白,是判断组织损伤和炎症反应的敏感指标之一。CRP的表达水平与动脉粥样硬化(atherosclerosis,AS)和心血管疾病的发生具有冠著的相关性。但是关于CRP是否是AS的独立危险因素并参与AS的发病机制,目前尚存在很大争议。新近的研究发现,CRP与某些特定的配体结合后,五聚体结构CRP可分离形成单体结构CRP。这一发现为研究CRP蛋白与AS的相互关系提供了新的线索,对CRP及其单体结构的深入研究,将有可能帮助人们找到治疗心血管疾病的有效方法。就炎性反应标志物CRP及其单体(monomeric CRP,mCRP)与动脉粥样硬化的相关研究进展进行综述,以探讨分析CRP在AS中的作用。  相似文献   

12.
《Cytokine》2014,70(2):165-179
C-reactive protein (CRP) is the most acute-phase reactant serum protein of inflammation and a strong predictor of cardiovascular disease. Its expression is associated with atherosclerotic plaque instability and the formation of immature micro-vessels. We have previously shown that CRP upregulates endothelial-derived Notch-3, a key receptor involved in vascular development, remodelling and maturation. In this study, we investigated the links between the bioactive monomeric CRP (mCRP) and Notch-3 signalling in angiogenesis. We used in vitro (cell counting, wound-healing and tubulogenesis assays) and in vivo (chorioallantoic membrane) angiogenic assays and Western blotting to study the angiogenic signalling pathways induced by mCRP and Notch-3 activator chimera protein (Notch-3/Fc). Our results showed an additive effect on angiogenesis of mCRP stimulatory effect combined with Notch-3/Fc promoting bovine aortic endothelial cell (BAEC) proliferation, migration, tube formation in MatrigelTM with up-regulation of phospho-Akt expression. The pharmacological blockade of PI3K/Akt survival pathway by LY294002 fully inhibited in vitro and in vivo angiogenesis induced by mCRP/Notch-3/Fc combination while blocking Notch signalling by gamma-secretase inhibitor (DAPT) partially inhibited mCRP/Notch-3/Fc-induced angiogenesis. Using a BAEC vascular smooth muscle cell co-culture sprouting angiogenesis assay and transmission electron microscopy, we showed that activation of both mCRP and Notch-3 signalling induced the formation of thicker sprouts which were shown later by Western blotting to be associated with an up-regulation of N-cadherin expression and a down-regulation of VE-cadherin expression. Thus, mCRP combined with Notch-3 activator promote angiogenesis through the PI3K/Akt pathway and their therapeutic combination has potential to promote and stabilize vessel formation whilst reducing the risk of haemorrhage from unstable plaques.  相似文献   

13.
The hydrodynamic properties of the C-reactive protein (CRP) at different pH were studied using quasi-elastic light scattering, size-exclusion liquid chromatography, and nonreducing gel electrophoresis. It was shown that a CRP solution at pH 5.0-7.2 presents a polydisperse system the major component of which is the native pentameric CRP. At pH 4.0-4.5, CRP exists in two states having different hydrodynamic properties: the native pentameric form with a molecular mass of 120 kDa and with the hydrodynamic radius of 4.03 nm and high-molecular-weight aggregates with a wide range of their molecular weight distribution. The interaction of the C-reactive protein with monoclonal antibodies to it indicates that conformation-dependent surface epitopes of the protein lose the native structure at pH 5.0-5.5. The aggregation of CRP is an irreversible process, which begins in a narrow pH range of pH 5.0-4.5 and is not accompanied by the dissociation into subunits but is determined by intermolecular interactions of its quasi-native pentamers.  相似文献   

14.
C-reactive protein (CRP) is a cyclic pentameric protein whose major binding specificity, at physiological pH, is for substances bearing exposed phosphocholine moieties. Another pentameric form of CRP, which exists at acidic pH, displays binding activity for oxidized LDL (ox-LDL). The ox-LDL-binding site in CRP, which is hidden at physiological pH, is exposed by acidic pH-induced structural changes in pentameric CRP. The aim of this study was to expose the hidden ox-LDL-binding site of CRP by site-directed mutagenesis and to generate a CRP mutant that can bind to ox-LDL without the requirement of acidic pH. Mutation of Glu(42), an amino acid that participates in intersubunit interactions in the CRP pentamer and is buried, to Gln resulted in a CRP mutant (E42Q) that showed significant binding activity for ox-LDL at physiological pH. For maximal binding to ox-LDL, E42Q CRP required a pH much less acidic than that required by wild-type CRP. At any given pH, E42Q CRP was more efficient than wild-type CRP in binding to ox-LDL. Like wild-type CRP, E42Q CRP remained pentameric at acidic pH. Also, E42Q CRP was more efficient than wild-type CRP in binding to several other deposited, conformationally altered proteins. The E42Q CRP mutant provides a tool to investigate the functions of CRP in defined animal models of inflammatory diseases including atherosclerosis because wild-type CRP requires acidic pH to bind to deposited, conformationally altered proteins, including ox-LDL, and available animal models may not have sufficient acidosis or other possible modifiers of the pentameric structure of CRP at the sites of inflammation.  相似文献   

15.
C-reactive protein (CRP) is a phylogenetically conserved protein; in humans, it is present in the plasma and at sites of inflammation. At physiological pH, native pentameric CRP exhibits calcium-dependent binding specificity for phosphocholine. In this study, we determined the binding specificities of CRP at acidic pH, a characteristic of inflammatory sites. We investigated the binding of fluid-phase CRP to six immobilized proteins: complement factor H, oxidized low-density lipoprotein, complement C3b, IgG, amyloid β, and BSA immobilized on microtiter plates. At pH 7.0, CRP did not bind to any of these proteins, but, at pH ranging from 5.2 to 4.6, CRP bound to all six proteins. Acidic pH did not monomerize CRP but modified the pentameric structure, as determined by gel filtration, 1-anilinonaphthalene-8-sulfonic acid-binding fluorescence, and phosphocholine-binding assays. Some modifications in CRP were reversible at pH 7.0, for example, the phosphocholine-binding activity of CRP, which was reduced at acidic pH, was restored after pH neutralization. For efficient binding of acidic pH-treated CRP to immobilized proteins, it was necessary that the immobilized proteins, except factor H, were also exposed to acidic pH. Because immobilization of proteins on microtiter plates and exposure of immobilized proteins to acidic pH alter the conformation of immobilized proteins, our findings suggest that conformationally altered proteins form a CRP-ligand in acidic environment, regardless of the identity of the protein. This ligand binding specificity of CRP in its acidic pH-induced pentameric state has implications for toxic conditions involving protein misfolding in acidic environments and favors the conservation of CRP throughout evolution.  相似文献   

16.
The activation of endothelial cells (ECs) by monomeric C-reactive protein (mCRP) has been implicated in contributing to atherogenesis. However, the potent proinflammatory actions of mCRP on ECs in vitro appear to be incompatible with the atheroprotective effects of mCRP in a mouse model. Because mCRP is primarily generated within inflamed tissues and is rapidly cleared from the circulation, we tested whether these discrepancies can be explained by topological differences in response to mCRP within blood vessels. In a Transwell culture model, the addition of mCRP to apical (luminal), but not basolateral (abluminal), surfaces of intact human coronary artery EC monolayers evoked a significant up-regulation of MCP-1, IL-8, and IL-6. Such polarized stimulation of mCRP was observed consistently regardless of EC type or experimental conditions (e.g. culture of ECs on filters or extracellular matrix-coated surfaces). Accordingly, we detected enriched lipid raft microdomains, the major surface sensors for mCRP on ECs, in apical membranes, leading to the preferential apical binding of mCRP and activation of ECs through the polarized induction of the phospholipase C, p38 MAPK, and NF-κB signaling pathways. Furthermore, LPS and IL-1β induction of EC activation also exhibited topological dependence, whereas TNF-α did not. Together, these results indicate that tissue-associated mCRP likely contributes little to EC activation. Hence, topological localization is an important, but often overlooked, factor that determines the contribution of mCRP and other proinflammatory mediators to chronic vascular inflammation.  相似文献   

17.
In chronic peripheral inflammation, endothelia in brain capillary beds could play a role for the apolipoprotein E4 (ApoE4)‐mediated risk for Alzheimer''s disease (AD) risk. Using human brain tissues, here we demonstrate that the interactions of endothelial CD31 with monomeric C‐reactive protein (mCRP) versus ApoE were linked with shortened neurovasculature for AD pathology and cognition. Using ApoE knock‐in mice, we discovered that intraperitoneal injection of mCRP, via binding to CD31 on endothelial surface and increased CD31 phosphorylation (pCD31), leading to cerebrovascular damage and the extravasation of T lymphocytes into the ApoE4 brain. While mCRP was bound to endothelial CD31 in a dose‐ and time‐dependent manner, knockdown of CD31 significantly decreased mCRP binding and altered the expressions of vascular‐inflammatory factors including vWF, NF‐κB and p‐eNOS. RNAseq revealed endothelial pathways related to oxidative phosphorylation and AD pathogenesis were enhanced, but endothelial pathways involving in epigenetics and vasculogenesis were inhibited in ApoE4. This is the first report providing some evidence on the ApoE4‐mCRP‐CD31 pathway for the cross talk between peripheral inflammation and cerebrovasculature leading to AD risk.  相似文献   

18.
The penultimate step in the pathway of riboflavin biosynthesis is catalyzed by the enzyme lumazine synthase (LS). One of the most distinctive characteristics of this enzyme is the structural quaternary divergence found in different species. The protein exists as pentameric and icosahedral forms, built from practically the same structural monomeric unit. The pentameric structure is formed by five 18-kDa monomers, each extensively contacting neighboring monomers. The icosahedrical structure consists of 60 LS monomers arranged as 12 pentamers giving rise to a capsid exhibiting icosahedral 532 symmetry. In all lumazine synthases studied, the topologically equivalent active sites are located at the interfaces between adjacent subunits in the pentameric modules. The Brucella sp. lumazine synthase (BLS) sequence clearly diverges from pentameric and icosahedric enzymes. This unusual divergence prompted us to further investigate its quaternary arrangement. In the present work, we demonstrate by means of solution light scattering and x-ray structural analyses that BLS assembles as a very stable dimer of pentamers, representing a third category of quaternary assembly for lumazine synthases. We also describe by spectroscopic studies the thermodynamic stability of this oligomeric protein and postulate a mechanism for dissociation/unfolding of this macromolecular assembly. The higher molecular order of BLS increases its stability 20 degrees C compared with pentameric lumazine synthases. The decameric arrangement described in this work highlights the importance of quaternary interactions in the stabilization of proteins.  相似文献   

19.
The clinical relevance of gene therapy using the recombinant adeno-associated virus (rAAV) vectors often requires widespread distribution of the vector, and in this case, systemic delivery is the optimal route of administration. Humoral blood factors, such as antibodies or complement, are the first barriers met by the vectors administered systemically. We have found that other blood proteins, galectin 3 binding protein (G3BP) and C-reactive protein (CRP), can interact with different AAV serotypes in a species-specific manner. While interactions of rAAV vectors with G3BP, antibodies, or complement lead to a decrease in vector efficacy, systemic transduction of the CRP-deficient mouse and its respective control clearly established that binding to mouse CRP (mCRP) boosts rAAV vector 1 (rAAV-1) and rAAV-6 transduction efficiency in skeletal muscles over 10 times. Notably, the high efficacy of rAAV-6 in CRP-deficient mice can be restored by reconstitution of the CRP-deficient mouse with mCRP. Human CRP (hCRP) does not interact with either rAAV-1 or rAAV-6, and, consequently, the high efficiency of mCRP-mediated muscle transduction by these serotypes in mice cannot be translated to humans. No interaction of mCRP or hCRP was observed with rAAV-8 and rAAV-9. We show, for the first time, that serum components can significantly enhance rAAV-mediated tissue transduction in a serotype- and species-specific manner. Bioprocessing in body fluids should be considered when transfer of a preclinical proof of concept for AAV-based gene therapy to humans is planned.  相似文献   

20.
Age-related macular degeneration is a leading form of blindness in Western countries and is associated with a common SNP (rs 1061170/Y402H) in the Factor H gene, which encodes the two complement inhibitors Factor H and FHL1. However, the functional consequences of this Tyr(402) His exchange in domain 7 are not precisely defined. In this study, we show that the Tyr(402) His sequence variation affects Factor H surface recruitment by monomeric C-reactive protein (mCRP) to specific patches on the surface of necrotic retinal pigment epithelial cells. Enhanced attachment of the protective Tyr(402) variants of both Factor H and FHL1 by mCRP results in more efficient complement control and further provides an anti-inflammatory environment. In addition, we demonstrate that mCRP is generated on the surface of necrotic retinal pigment epithelial cells and that this newly formed mCRP colocalizes with the cell damage marker annexin V. Bound to the cell surface, Factor H-mCRP complexes allow complement inactivation and reduce the release of the proinflammatory cytokine TNF-α. This mCRP-mediated complement inhibitory and anti-inflammatory activity at necrotic membrane lesions is affected by residue 402 of Factor H and defines a new role for mCRP, for Factor H, and also for the mCRP-Factor H complex. The increased protective capacity of the Tyr(402) Factor H variant allows better and more efficient clearance and removal of cellular debris and reduces inflammation and pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号