首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multiple roles of PTEN in tumor suppression   总被引:68,自引:0,他引:68  
Di Cristofano A  Pandolfi PP 《Cell》2000,100(4):387-390
  相似文献   

2.
Salmena L  Carracedo A  Pandolfi PP 《Cell》2008,133(3):403-414
Since its discovery as the elusive tumor suppressor gene at the frequently mutated 10q23 locus, PTEN has been identified as lost or mutated in several sporadic and heritable tumor types. A decade of work has established that PTEN is a nonredundant phosphatase that is essential for regulating the highly oncogenic prosurvival PI3K/AKT signaling pathway. This review discusses emerging modes of PTEN function and regulation, and speculates about how manipulation of PTEN function could be used for cancer therapy.  相似文献   

3.
4.
5.
Ubiquitination regulates PTEN nuclear import and tumor suppression   总被引:12,自引:0,他引:12  
The PTEN tumor suppressor is frequently affected in cancer cells, and inherited PTEN mutation causes cancer-susceptibility conditions such as Cowden syndrome. PTEN acts as a plasma-membrane lipid-phosphatase antagonizing the phosphoinositide 3-kinase/AKT cell survival pathway. However, PTEN is also found in cell nuclei, but mechanism, function, and relevance of nuclear localization remain unclear. We show that nuclear PTEN is essential for tumor suppression and that PTEN nuclear import is mediated by its monoubiquitination. A lysine mutant of PTEN, K289E associated with Cowden syndrome, retains catalytic activity but fails to accumulate in nuclei of patient tissue due to an import defect. We identify this and another lysine residue as major monoubiquitination sites essential for PTEN import. While nuclear PTEN is stable, polyubiquitination leads to its degradation in the cytoplasm. Thus, we identify cancer-associated mutations of PTEN that target its posttranslational modification and demonstrate how a discrete molecular mechanism dictates tumor progression by differentiating between degradation and protection of PTEN.  相似文献   

6.
Par‐4 is a pro‐apoptotic, tumor suppressor protein that induces apoptosis selectively in cancer cells. Endoplasmic reticulum‐stress and higher levels of protein kinase A in tumor cells confer the coveted feature of cancer selective response to extracellular and intracellular Par‐4, respectively. Recent studies have shown that systemic Par‐4 confers resistance to tumor growth in mice, and that tumor‐resistance is transferable by bone‐marrow transplantation. Moreover, recombinant Par‐4 inhibits the growth of tumors in mice. As systemic Par‐4 induces apoptosis via cell surface GRP78, strategies that promote GRP78 trafficking to the cell surface are expected sensitize cancer cells to circulating levels of Par‐4. This review illustrates the domains and mechanisms by which Par‐4 orchestrates the apoptotic process in both cell culture models and in physiological settings. J. Cell. Physiol. 227: 3715–3721, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Prostate apoptosis response-4 (Par-4) is a 38-kDa protein originally identified as a gene product upregulated in prostate cancer cells undergoing apoptosis. Cell death mediated by Par-4 and its interaction partner DAP like kinase (Dlk) is characterized by dramatic changes of the cytoskeleton. To uncover the role of the cytoskeleton in Par-4/Dlk-mediated apoptosis, we analyzed Par-4 for a direct association with cytoskeletal structures. Confocal fluorescence microscopy revealed that endogenous Par-4 is specifically associated with stress fibers in rat fibroblasts. In vitro cosedimentation analyses and in vivo FRET analyses showed that Par-4 directly binds to F-actin. Actin binding is mediated by the N-terminal 266 amino acids, but does not require the C-terminal region of Par-4 containing the leucine zipper and the death domain. Furthermore, the interaction of Par-4 with actin filaments leads to the formation of actin bundles in vitro and in vivo. In rat fibroblasts, this microfilament association is essential for the pro-apoptotic function of Par-4, since both disruption of the actin cytoskeleton by cytochalasin D treatment and overexpression of Par-4 constructs impaired in actin binding result in a significant decrease of apoptosis induction by Par-4 and Dlk. We propose a model, in which Par-4 recruits Dlk to stress fibers, leading to enhanced phosphorylation of the regulatory light chain of myosin II (MLC) and to the induction of apoptosis.  相似文献   

8.

Background

PTEN is well known to function as a tumor suppressor that antagonizes oncogenic signaling and maintains genomic stability. The PTEN gene is frequently deleted or mutated in human cancers and the wide cancer spectrum associated with PTEN deficiency has been recapitulated in a variety of mouse models of Pten deletion or mutation. Pten mutations are highly penetrant in causing various types of spontaneous tumors that often exhibit resistance to anticancer therapies including immunotherapy. Recent studies demonstrate that PTEN also regulates immune functionality.

Objective

To understand the multifaceted functions of PTEN as both a tumor suppressor and an immune regulator.

Methods

This review will summarize the emerging knowledge of PTEN function in cancer immunoediting. In addition, the mechanisms underlying functional integration of various PTEN pathways in regulating cancer evolution and tumor immunity will be highlighted.

Results

Recent preclinical and clinical studies revealed the essential role of PTEN in maintaining immune homeostasis, which significantly expands the repertoire of PTEN functions. Mechanistically, aberrant PTEN signaling alters the interplay between the immune system and tumors, leading to immunosuppression and tumor escape.

Conclusion

Rational design of personalized anti-cancer treatment requires mechanistic understanding of diverse PTEN signaling pathways in modulation of the crosstalk between tumor and immune cells.
  相似文献   

9.
Modeling INK4/ARF tumor suppression in the mouse   总被引:1,自引:0,他引:1  
The INK4/ARF locus encodes the p15(INK4B), p16(INK4A) and p14(ARF) tumor suppressor proteins whose loss of function is associated with the pathogenesis of many human cancers. Dissecting the relative contribution of these genes to growth control in vivo is complicated by their physical contiguity and the frequency of homozygous deletions that inactivate all three components of this locus. While genetically engineered mouse models provide a rigorous system for elucidating cancer gene function, there is some evidence to suggest there are cross-species differences in regulating tumor biology. Given the prevalence of mouse models in cancer research and the potential contribution of such models to preclinical studies, it is important determine to what degree the function of these critical tumor suppressors is conserved between organisms. In this review, we assess the relative biological roles of INK4A, INK4B and ARF in mice and humans with the aim of determining the faithfulness of mouse models and also of obtaining insights into the pattern of specific tumor types that are associated with germline and somatic mutations at components of this locus. We will discuss 1) the contribution of INK4A, INK4B and ARF to growth control in vitro in a series of cell types, 2) the in vivo phenotypes associated with germline loss of function of this locus and 3) the study of Ink4a and Arf in different cancer-specific mouse models.  相似文献   

10.
Inhibition of apoptosis is an important characteristic of oncogenic transformation. The Par-4 gene product has recently been shown to be upregulated in cells undergoing apoptotic cell death, and its ectopic expression was shown to be critical in apoptosis. We demonstrate that expression of oncogenic Ras promotes a potent reduction of Par-4 protein and mRNA levels through a MEK-dependent pathway. In addition, the expression of permanently active mutants of MEK, Raf-1 or zetaprotein kinase C but not of phosphatidylinositol 3-kinase (PI 3-kinase) is sufficient to decrease Par-4 levels. These effects are independent of p53, p16 and p19, and were detected not only in fibroblast primary cultures but also in NIH 3T3 and HeLa cells, indicating that they are not secondary to Ras actions on cell cycle regulation. Importantly, restoration of Par-4 levels to normal in Ras-transformed cells makes these cells sensitive to the pro-apoptotic actions of tumor necrosis factor-alpha under conditions in which PI 3-kinase is inhibited and also severely impairs colony formation in soft agar and tumor development in nude mice, as well as increases the sensitivity of these tumors to camptothecin. This indicates that the downregulation of Par-4 by oncogenic Ras is a critical event in tumor progression.  相似文献   

11.
Par-4 inducible apoptosis in prostate cancer cells   总被引:4,自引:0,他引:4  
Prostate cancer is associated with the inability of prostatic epithelial cells to undergo apoptosis rather than with increased cell proliferation. Prostate apoptosis response-4 (Par-4) is a unique pro-apoptotic molecule that is capable of selectively inducing apoptosis in cancer cells when over-expressed, sensitizing the cells to diverse apoptotic stimuli and causing regression of tumors in animal models. This review discusses the salient functions of Par-4 that can be harnessed to prostate cancer therapy.  相似文献   

12.
13.
14.
15.
The role of PML in tumor suppression   总被引:37,自引:0,他引:37  
Salomoni P  Pandolfi PP 《Cell》2002,108(2):165-170
The PML gene, involved in the t(15;17) chromosomal translocation of acute promyelocytic leukemia (APL), encodes a protein which localizes to the PML-nuclear body, a subnuclear macromolecular structure. PML controls apoptosis, cell proliferation, and senescence. Here, we review the current understanding of its role in tumor suppression.  相似文献   

16.
Par-4 links dopamine signaling and depression   总被引:1,自引:0,他引:1  
Prostate apoptosis response 4 (Par-4) is a leucine zipper containing protein that plays a role in apoptosis. Although Par-4 is expressed in neurons, its physiological role in the nervous system is unknown. Here we identify Par-4 as a regulatory component in dopamine signaling. Par-4 directly interacts with the dopamine D2 receptor (D2DR) via the calmodulin binding motif in the third cytoplasmic loop. Calmodulin can effectively compete with Par-4 binding in a Ca2+-dependent manner, providing a route for Ca2+-mediated downregulation of D2DR efficacy. To examine the importance of the Par-4/D2DR interaction in dopamine signaling in vivo, we used a mutant mouse lacking the D2DR interaction domain of Par-4, Par-4DeltaLZ. Primary neurons from Par-4DeltaLZ embryos exhibit an enhanced dopamine-cAMP-CREB signaling pathway, indicating an impairment in dopamine signaling in these cells. Remarkably, Par-4DeltaLZ mice display significantly increased depression-like behaviors. Collectively, these results provide evidence that Par-4 constitutes a molecular link between impaired dopamine signaling and depression.  相似文献   

17.
Apoptosis by Par-4 in cancer and neurodegenerative diseases   总被引:12,自引:0,他引:12  
  相似文献   

18.
张娴文  白洁 《生命科学》2013,(11):1100-1104
前列腺凋亡反应基因-4(prostate apoptosis responsegene.4,par-4)是从凋亡的前列腺癌细胞中分离出来的一种基因,该基因编码的产物是前列腺凋亡反应蛋白4(Par-4)。Par-4可通过细胞内、外途径调节各种分子表达,诱导癌细胞凋亡,选择性抑制肿瘤细胞生长,因此,Par-4的表达与肿瘤的发生、发展及预后有密切的联系。Par-4在治疗恶性肿瘤中表现出良好的肿瘤细胞靶向杀伤效应,对正常组织细胞无明显影响,故具有极其重要的应用价值。就Par-4特异性诱导肿瘤细胞凋亡及其潜在抗肿瘤作用的进展进行综述。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号