首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Although the importance of methyl metabolism in fetal development is well recognized, there is limited information on the dynamics of methionine flow through maternal and fetal tissues and on how this is related to circulating total homocysteine concentrations. Rates of homocysteine remethylation in maternal and fetal tissues on days 11, 19, and 21 of gestation were measured in pregnant rats fed diets with limiting or surplus amounts of folic acid and choline at two levels of methionine and then infused with L-[1-(13)C,(2)H(3)-methyl]methionine. The rate of homocysteine remethylation was highest in maternal liver and declined as gestation progressed. Diets deficient in folic acid and choline reduced the production of methionine from homocysteine in maternal liver only in the animals fed a methionine-limited diet. Throughout gestation, the pancreas exported homocysteine for methylation within other tissues. Little or no methionine cycle activity was detected in the placenta at days 19 and 21 of gestation, but, during this period, fetal tissues, especially the liver, synthesized methionine from homocysteine. Greater enrichment of homocysteine in maternal plasma than placenta, even in animals fed the most-deficient diets, shows that the placenta did not contribute homocysteine to maternal plasma. Methionine synthesis from homocysteine in fetal tissues was maintained or increased when the dams were fed folate- and choline-deficient methionine-restricted diets. This study shows that methyl-deficient diets decrease the remethylation of homocysteine within maternal tissues but that these rates are protected to some extent within fetal tissues.  相似文献   

4.
5.
In utero environment is known to affect fetal development. Especially, the distinct fetal programming of carcinogenesis was reported in offspring exposed to maternal diets containing soy protein isolate (SPI) or genistein. Therefore, we investigated whether maternal consumption of low-isoflavone SPI or genistein alters hepatic gene expression and liver development in rat offspring. Female Sprague–Dawley rats were fed a casein diet, a low-isoflavone SPI diet or a casein diet supplemented with genistein (250 mg/kg diet) for 2 weeks before mating and throughout pregnancy and lactation. Male offspring were studied on postnatal day 21 (CAS, SPI and GEN groups). Among 965 differentially expressed hepatic genes related to maternal diet (P<.05), the expression of 590 was significantly different between CAS and SPI groups. Conversely, the expression of 88 genes was significantly different between CAS and GEN groups. Especially, genes involved in drug metabolism were significantly affected by the maternal diet. SPI group showed increased cell proliferation, reduced apoptosis and activation of the mTOR pathway, which may contribute to a higher relative liver weight compared to other groups. We observed higher serum homocysteine levels and lower global and CpG site-specific DNA methylation of Gadd45b, a gene involved in cell proliferation and apoptosis, in SPI group compared to CAS group. Maternal SPI diet also reduced histone H3-Lysine 9 (H3K9) trimethylation and increased H3K9 acetylation in offspring. These results demonstrate that maternal consumption of a low-isoflavone SPI diet alters the hepatic gene expression profile and liver development in offspring possibly by epigenetic processes.  相似文献   

6.
Zeisel SH 《IUBMB life》2007,59(6):380-387
Recent progress in the understanding of the human dietary requirement for choline highlights the importance of genetic variation and epigenetics in human nutrient requirements. Choline is a major dietary source of methyl-groups (one of choline's metabolites, betaine, participates in the methylation of homocysteine to form methionine); also choline is needed for the biosynthesis of cell membranes, bioactive phospholipids and the neurotransmitter acetylcholine. A recommended dietary intake for choline in humans was set in 1998, and a portion of the choline requirement can be met via endogenous de novo synthesis of phosphatidylcholine catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT) in the liver. Though many foods contain choline, many humans do not get enough in their diets. When deprived of dietary choline, most adult men and postmenopausal women developed signs of organ dysfunction (fatty liver, liver or muscle cell damage, and reduces the capacity to handle a methionine load, resulting in elevated homocysteine). However, only a portion of premenopausal women developed such problems. The difference in requirement occurs because estrogen induces expression of the PEMT gene and allows premenopausal women to make more of their needed choline endogenously. In addition, there is significant variation in the dietary requirement for choline that can be explained by common polymorphisms in genes of choline and folate metabolism. Choline is critical during fetal development, when it alters DNA methylation and thereby influences neural precursor cell proliferation and apoptosis. This results in long term alterations in brain structure and function, specifically memory function.  相似文献   

7.

Aim

Fructose consumption is associated with altered hepatic function and metabolic compromise and not surprisingly has become a focus for perinatal studies. We have previously shown that maternal fructose intake results in sex specific changes in fetal, placental and neonatal outcomes. In this follow-up study we investigated effects on maternal, fetal and neonatal hepatic fatty acid metabolism and immune modulation.

Methods

Pregnant rats were randomised to either control (CON) or high-fructose (FR) diets. Fructose was given in solution and comprised 20% of total caloric intake. Blood and liver samples were collected at embryonic day 21 (E21) and postnatal day (P)10. Maternal liver samples were also collected at E21 and P10. Liver triglyceride and glycogen content was measured with standard assays. Hepatic gene expression was measured with qPCR.

Results

Maternal fructose intake during pregnancy resulted in maternal hepatic ER stress, hepatocellular injury and increased levels of genes that favour lipogenesis. These changes were associated with a reduction in the NLRP3 inflammasome. Fetuses of mothers fed a high fructose diet displayed increased hepatic fructose transporter and reduced fructokinase mRNA levels and by 10 days of postnatal age, also have hepatic ER stress, and elevated IL1β mRNA levels. At P10, FR neonates demonstrated increased hepatic triglyceride content and particularly in males, associated changes in the expression of genes regulating beta oxidation and the NLRP3 inflammasome. Further, prenatal fructose results in sex-dependant changes in levels of key clock genes.

Conclusions

Maternal fructose intake results in age and sex-specific alterations in maternal fetal and neonatal free fatty acid metabolism, which may be associated in disruptions in core clock gene machinery. How these changes are associated with hepatic inflammatory processes is still unclear, although suppression of the hepatic inflammasome, as least in mothers and male neonates may point to impaired immune sensing.  相似文献   

8.
9.
DNA methylation is one of the essential factors in the control of gene expression. Alteration of the DNA methylation pattern has been linked to various neurological, behavioral and neurocognitive dysfunctions. Recent studies have pointed out the importance of epigenetics in brain development and functions including learning and memory. Nutrients related to one‐carbon metabolism are known to play important roles in the maintenance of genomic DNA methylation. Previous studies have shown that the long‐term administration of a diet lacking essential one‐carbon nutrients such as methionine, choline and folic acid (methyl donors) caused global DNA hypermethylation in the brain. Therefore, the long‐term feeding of a methyl‐donor‐deficient diet may cause abnormal brain development including learning and memory. To confirm this hypothesis, 3‐week‐old mice were maintained on a folate‐, methionine‐ and choline‐deficient (FMCD) or control (CON) diet for 3 weeks. We found that the methyl‐donor deficiency impaired both novel object recognition and fear extinction after 3 weeks of treatment. The FMCD group showed spontaneous recovery of fear that differed from that in CON. In addition, we found decreased Gria1 gene expression and specific CpG hypermethylation of the Gria1 promoter region in the FMCD hippocampus. Our data suggest that a chronic dietary lack of methyl donors in the developmental period affects learning, memory and gene expressions in the hippocampus.  相似文献   

10.
Maternal obesity increases placental transport of macronutrients, resulting in fetal overgrowth and obesity later in life. Choline participates in fatty acid metabolism, serves as a methyl donor and influences growth signaling, which may modify placental macronutrient homeostasis and affect fetal growth. Using a mouse model of maternal obesity, we assessed the effect of maternal choline supplementation on preventing fetal overgrowth and restoring placental macronutrient homeostasis. C57BL/6J mice were fed either a high-fat (HF, 60% kcal from fat) diet or a normal (NF, 10% kcal from fat) diet with a drinking supply of either 25 mM choline chloride or control purified water, respectively, beginning 4 weeks prior to mating until gestational day 12.5. Fetal and placental weight, metabolites and gene expression were measured. HF feeding significantly (P<.05) increased placental and fetal weight in the HF-control (HFCO) versus NF-control (NFCO) animals, whereas the HF choline-supplemented (HFCS) group effectively normalized placental and fetal weight to the levels of the NFCO group. Compared to HFCO, the HFCS group had lower (P<.05) glucose transporter 1 and fatty acid transport protein 1 expression as well as lower accumulation of glycogen in the placenta. The HFCS group also had lower (P<.05) placental 4E-binding protein 1 and ribosomal protein s6 phosphorylation, which are indicators of mechanistic target of rapamycin complex 1 activation favoring macronutrient anabolism. In summary, our results suggest that maternal choline supplementation prevented fetal overgrowth in obese mice at midgestation and improved biomarkers of placental macronutrient homeostasis.  相似文献   

11.
To investigate the role of selenium (Se) in the developing porcine fetus, prepubertal gilts (n=42) were randomly assigned to either Se-adequate (0.39 ppm Se) or Se-deficient (0.05 ppm Se) gestation diets 6 wk prior to breeding. Maternal and fetal liver was collected at d 30, 45, 70, 90, and 114 of pregnancy. Concentrations of Se in maternal liver decreased during gestation in gilts fed the low-Se diet. The activity of cellular glutathione peroxidase (GPx) was decreased at d 30 and 45 of gestation in liver of gilts fed the low-Se diet. Concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were greater in liver homogenates from gilts fed the low-Se diet. Within the fetuses, liver Se decreased in those fetuses of gilts fed the low-Se diet. Although the activity of GPx in fetal liver was not affected by the maternal diet, concentrations of H2O2 and MDA in fetal liver were greater in fetuses from gilts fed the low-Se diet. Maternal liver GPx activity was approx 12-fold greater than fetal liver GPx activity regardless of dietary treatment. These results indicate that maternal dietary Se intake affects fetal liver Se concentration and feeding a low-Se diet during gestation increases oxidative stress to the fetus, as measured by fetal liver H2O2 and MDA.  相似文献   

12.
Maternal diet affects offspring DNA methylation in animal models, but evidence from humans is limited. We investigated the extent to which gestational intake of methyl donor nutrients affects global DNA methylation in maternal and umbilical cord blood. Among mother-infant pairs in Project Viva, a folate-replete US population, we estimated maternal intakes of vitamin B12, betaine, choline, folate, cadmium, zinc and iron periconceptionally and during the second trimester. We examined associations of these nutrients with DNA methylation, measured as %5-methyl cytosines (%5mC) in Long Interspersed Nuclear Element-1 (LINE-1), in first trimester (n = 830) and second trimester (n = 671) maternal blood and in cord blood at delivery (n = 516). Cord blood methylation was higher for male than female infants {mean [standard deviation (SD)] 84.8 [0.6] vs. 84.4 [0.7]%}. In the multivariable-adjusted model, maternal intake of methyl donor nutrients periconceptionally and during the second trimester of pregnancy was not positively associated with first trimester, second trimester or cord blood LINE-1 methylation. Periconceptional betaine intake was inversely associated with cord blood methylation [regression coefficient = −0.08% (95% confidence interval (CI): −0.14, −0.01)] but this association was attenuated after adjustment for dietary cadmium, which itself was directly associated with first trimester methylation and inversely associated with cord blood methylation. We also found an inverse association between periconceptional choline [−0.10%, 95% CI: −0.17, −0.03 for each SD (∼63 mg/day)] and cord blood methylation in males only. In this folate-replete population, we did not find positive associations between intake of methyl donor nutrients during pregnancy and DNA methylation overall, but among males, higher early pregnancy intakes of choline were associated with lower cord blood methylation.Key words: DNA methylation, pregnancy, cord blood, maternal diet, cadmium  相似文献   

13.
14.
Choline and C1 metabolism pathways intersect at the formation of methionine from homocysteine. Hepatic S-adenosylmethionine (AdoMet) concentrations are decreased in animals ingesting diets deficient in choline, and it has been suggested that this occurs because the availability of methionine limits AdoMet synthesis. If the above hypothesis is correct, changes in hepatic AdoMet concentrations should relate in some consistent manner to changes in hepatic methionine concentrations. Rats were fed on a choline-deficient or control diet for 1-42 days. Hepatic choline concentrations in control animals were 105 nmol/g, and decreased to 50% of control after the first 7 days on the choline-deficient diet. Hepatic methionine concentrations decreased by less than 20%, with most of this decrease occurring between days 3 and 7 of choline deficiency. Hepatic AdoMet concentrations decreased by 25% during the first week, and continued to decrease (in total, by over 60%) during each subsequent week during which animals consumed a choline-deficient diet. Hepatic S-adenosylhomocysteine (AdoHcy) concentrations increased by 50% when animals consumed a choline-deficient diet. AdoHcy is formed when AdoMet is utilized as a methyl donor. In summary, choline deficiency can deplete hepatic stores of AdoMet under dietary conditions that only minimally decrease the availability of methionine within liver. Thus decreased availability of methionine may not have been the only mechanism whereby choline deficiency lowers hepatic AdoMet concentrations. We suggest that increased utilization of AdoMet might also have occurred.  相似文献   

15.

Background

The importance of maternal dietary choline for fetal neural development and later cognitive function has been well-documented in experimental studies. Although choline is an essential dietary nutrient for humans, evidence that low maternal choline in pregnancy impacts neurodevelopment in human infants is lacking. We determined potential associations between maternal plasma free choline and its metabolites betaine and dimethylglycine in pregnancy and infant neurodevelopment at 18 months of age.

Methodology

This was a prospective study of healthy pregnant women and their full-term, single birth infants. Maternal blood was collected at 16 and 36 weeks of gestation and infant neurodevelopment was assessed at 18 months of age for 154 mother-infant pairs. Maternal plasma choline, betaine, dimethylglycine, methionine, homocysteine, cysteine, total B12, holotranscobalamin and folate were quantified. Infant neurodevelopment was evaluated using the Bayley Scales of Infant Development–III. Multivariate regression, adjusting for covariates that impact development, was used to determine the associations between maternal plasma choline, betaine and dimethylglycine and infant neurodevelopment.

Results

The maternal plasma free choline at 16 and 36 weeks gestation was median (interquartile range) 6.70 (5.78–8.03) and 9.40 (8.10–11.3) µmol/L, respectively. Estimated choline intakes were (mean ±SD) 383±98.6 mg/day, and lower than the recommended 450 mg/day. Betaine intakes were 142±70.2 mg/day. Significant positive associations were found between infant cognitive test scores and maternal plasma free choline (B = 6.054, SE = 2.283, p = 0.009) and betaine (B = 7.350, SE = 1.933, p = 0.0002) at 16 weeks of gestation. Maternal folate, total B12, or holotranscobalamin were not related to infant development.

Conclusion

We show that choline status in the first half of pregnancy is associated with cognitive development among healthy term gestation infants. More work is needed on the potential limitation of choline or betaine in the diets of pregnant women.  相似文献   

16.
The effects of dietary supplementation with 0.5% methionine, 2.5% serine, or both on hyperhomocysteinemia induced by deprivation of dietary choline or by dietary addition of 0.5% guanidinoacetic acid (GAA) were investigated in rats fed a 10% casein diet. Hyperhomocysteinemia induced by choline deprivation was not suppressed by methionine alone and was only partially suppressed by serine alone, whereas it was completely suppressed by a combination of methionine and serine, suggesting a synergistic effect of methionine and serine. Fatty liver was also completely prevented by the combination of methionine and serine. Compared with methionine alone, the combination of methionine and serine decreased hepatic S-adenosylhomocysteine and homocysteine concentrations and increased hepatic betaine and serine concentrations and betaine-homocysteine S-methyltransferase activity. GAA-induced hyperhomocysteinemia was partially suppressed by methionine alone, but no interacting effect of methionine and serine was detected. In contrast, GAA-induced fatty liver was completely prevented by the combination of methionine and serine. These results indicate that a combination of methionine and serine is effective in suppressing both hyperhomocysteinemia and fatty liver induced by choline deprivation, and that methionine alone is effective in suppressing GAA-induced hyperhomocysteinemia partially.  相似文献   

17.
The effects of dietary supplementation with 0.5% methionine, 2.5% serine, or both on hyperhomocysteinemia induced by deprivation of dietary choline or by dietary addition of 0.5% guanidinoacetic acid (GAA) were investigated in rats fed a 10% casein diet. Hyperhomocysteinemia induced by choline deprivation was not suppressed by methionine alone and was only partially suppressed by serine alone, whereas it was completely suppressed by a combination of methionine and serine, suggesting a synergistic effect of methionine and serine. Fatty liver was also completely prevented by the combination of methionine and serine. Compared with methionine alone, the combination of methionine and serine decreased hepatic S-adenosylhomocysteine and homocysteine concentrations and increased hepatic betaine and serine concentrations and betaine-homocysteine S-methyltransferase activity. GAA-induced hyperhomocysteinemia was partially suppressed by methionine alone, but no interacting effect of methionine and serine was detected. In contrast, GAA-induced fatty liver was completely prevented by the combination of methionine and serine. These results indicate that a combination of methionine and serine is effective in suppressing both hyperhomocysteinemia and fatty liver induced by choline deprivation, and that methionine alone is effective in suppressing GAA-induced hyperhomocysteinemia partially.  相似文献   

18.
The metabolism of [6,7-3H] estrone and of [6,7(3)H] estrone-3-sulfate have been comparatively studied in the maternal and fetal guinea-pig livers. The appearance of estradiol-17 beta resulting from the activity of the 17 beta-hydroxysteroid-dehydrogenase is more important in the fetal than in the maternal hepatic tissue. This suggests the direct transformation of estrone-3-sulfate into estradio-3-sulfate in the fetus. After incubation of the [3H] estrone, there is an abundant hepatic conjugation. The glycuroconjugated components are predominant, as well in the maternal as in the fetal hepatic tissue. For the latter-one the sulfoconjugation is inexistant. The sulfatasic activity shown after the incubation of [3H] estrone-3-sulfate is very low in the fetal hepatic tissue; in contrast, this activity is higher in the maternal tissue.  相似文献   

19.
《Epigenetics》2013,8(10):1125-1132
The insulin-like growth factor 2 (IGF2) gene, located within a cluster of imprinted genes on chromosome 11p15, encodes a fetal and placental growth factor affecting birth weight. DNA methylation variability at the IGF2 gene locus has been previously reported but its consequences on fetal growth and development are still mostly unknown in normal pediatric population. We collected one hundred placenta biopsies from 50 women with corresponding maternal and cord blood samples and measured anthropometric indices, blood pressure and metabolic phenotypes using standardized procedures. IGF2/H19 DNA methylation and IGF2 circulating levels were assessed using sodium bisulfite pyrosequencing and ELISA, respectively. Placental IGF2 (DMR0 and DMR2) DNA methylation levels were correlated with newborn’s fetal growth indices, such as weight, and with maternal IGF2 circulating concentration at the third trimester of pregnancy, whereas H19 (DMR) DNA methylation levels were correlated with IGF2 levels in cord blood. The maternal genotype of a known IGF2/H19 polymorphism (rs2107425) was associated with birth weight. Taken together, we showed that IGF2/H19 epigenotype and genotypes independently account for 31% of the newborn’s weight variance. No association was observed with maternal diabetic status, glucose concentrations or prenatal maternal body mass index. This is the first study showing that DNA methylation at the IGF2/H19 genes locus may act as a modulator of IGF2 newborn’s fetal growth and development within normal range. IGF2/H19 DNA methylation could represent a cornerstone in linking birth weight and fetal metabolic programming of late onset obesity.  相似文献   

20.
Abstract

An experiment was conducted to study the effects of graded levels of choline addition (0, 500, 1000 and 4000 mg/kg diet) in laying hen diets prepared either with degummed or refined rape oil on the performance, sensory properties and trimethylamine (TMA) contents of the eggs. Furthermore, the diets containing no supplemented choline or 4000 mg choline/kg diet were tested with adequate or inadequate methionine supply (4.2 vs. 2.8 g methionine/kg diet). TMA metabolism and N-balance were measured for the latter diet types, but only with the diets containing refined rape oil. Therefore, a total of 12 and 4 diets were tested in the feeding (n = 60) and balance study (n = 9). Laying performance (23 – 75 weeks of age) was not significantly influenced by increasing choline additions with the exception of feed-to-egg mass ratio which decreased significantly linearly (p linear = 0.003). However, a significant interaction between choline addition and laying month was detected which was caused by a depression of performance of the unsupplemented control group occurring from the sixth laying month. The most obvious effect of an inadequate methionine supply was a temporary drop in performance between the third and sixth laying months. The mean TMA-concentration in pooled egg yolks [μg/g] increased with dietary choline concentration [mg/kg] in an exponentially related fashion (y = 1.14 + 4E?10 ? x2.71, r2 = 0.962) and suggested only a minor influence of total dietary choline on TMA content up to approximately 2000 mg choline/kg. Individual TMA-concentrations varied greatly from 0.4 – 1.5 μg/g, from 2.2 – 34 μg/g and from 18.4 – 75 μg/g for eggs with a normal, aberrant and heavily aberrant odour, respectively. It is concluded that a total choline concentration of at least approximately 1500 mg/kg is necessary to maintain a maximal laying performance. An inadequate methionine supply cannot be compensated by an increased addition of choline. Neither degummed nor refined rape oil influenced the TMA content of eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号